
CS	1410:	Caloric	Balance

How	many	calories	should	you	eat	each	day?	It’s	a	commonly-asked	question,	and	the	answer	is	that	it’s
different	for	each	person	depending	on	their	physical	characteristics,	activity,	and	whether	they	want	to	lose
weight,	gain	weight,	or	maintain	their	current	weight.

Calories	are	units	of	energy	that	our	bodies	consume	and	expend	each	day.	If	we	consume	the	same	number
of	calories	that	we	expend,	then	our	body	weight	does	not	change.	If	we	consume	fewer	calories	than	we
expend	(a	caloric	deficit),	then	our	body	weight	decreases,	and	if	we	consume	more	calories	than	we	expend
(a	caloric	surplus),	then	our	body	weight	increases.	We	consume	calories	by	eating	food,	and	we	expend
calories	by	moving	around	and	exercising	(and	even	while	resting	or	sleeping).

By	leveraging	a	little	bit	of	math,	we	can	write	a	program	that	helps	us	to	determine	the	number	of	calories
that	we	should	consume	in	order	to	lose	weight,	gain	weight,	or	maintain	our	current	weight,	depending	on
our	goals.

Calculations
You	can	calculate	a	person’s	daily	caloric	balance	to	determine	if	the	person	ends	the	day	with	a	caloric
deficit,	a	caloric	surplus,	or	a	stable	balance.	The	calculation	is	simple:	calories	consumed	minus	calories
expended.	But	how	are	each	of	these	calculated?

The	number	of	calories	a	person	consumes	in	a	day	is	calculated	by	adding	the	number	of	calories	of
each	food	item	that	the	person	eats	during	the	day.	It’s	that	simple.

The	number	of	calories	a	person	expends	in	a	day	is	calculated	by	adding	two	values:	1)	the	number	of
calories	that	the	person’s	body	expends	while	at	rest	(called	the	Basal	Metabolic	Rate,	or	BMR),	and	2)	the
number	of	calories	that	the	person	expends	while	moving	around	or	exercising	during	the	day	(which
depends	on	the	level	of	physical	activity	or	how	rigorous	the	exercise	is).

There	are	simple	formulas	to	calculate	both	the	BMR	and	the	number	of	calories	expended	through
physical	activity:

BMR:	there	are	two	formulas	to	calculate	this:	one	for	men	and	one	for	women.	In	either	case,	the
person’s	weight,	height,	and	age	are	needed.	Here	are	the	formulas:

Men:			BMR	=	66	+	(12.7	*	height	in	inches)	+	(6.23	*	weight	in	pounds)	-	(6.8	*	age	in	years)
Women:	BMR	=	655	+	(4.7	*	height	in	inches)	+	(4.35	*	weight	in	pounds)	-	(4.7	*	age	in	years)

Physical	activity:	each	type	of	physical	activity	expends	a	different	number	of	calories.	Refer	to
this	table	for	a	list	of	physical	activities	and	the	number	of	calories	that	each	activity	expends	per
minute,	per	pound.	So,	in	order	to	calculate	the	total	number	of	calories	expended	for	an	activity,
you’ll	need	to	know	the	person’s	weight	and	the	duration	of	the	activity	in	minutes.

Assignment
Your	assignment	is	to	create	a	Python	program	that	uses	a	class	to	calculate	and	track	a	person’s	caloric
balance	throughout	a	day.

Your	program	should	start	by	asking	the	user	for	a	person’s	physical	characteristics	that	are	needed	for	the
calculations.	This	includes	the	person’s	gender,	weight,	height,	and	age.	Your	program	should	use	this
information	to	calculate	the	person’s	BMR,	subtract	it	from	the	caloric	balance,	and	then	print	the	updated
caloric	balance.	The	caloric	balance	should	start	at	0,	so	after	subtracting	the	BMR,	the	caloric	balance	will
be	a	negative	number.	Then,	your	program	should	display	a	menu	that	provides	the	user	with	three	options:

1.	 Record	Food	Consumption:	this	option	will	ask	the	user	for	the	number	of	calories	of	the	food	item
that	was	consumed.	Your	program	should	add	this	number	to	the	caloric	balance	and	then	print	the
updated	caloric	balance.

2.	 Record	Physical	Activity:	this	option	will	ask	the	user	to	select	an	activity	from	a	list	of	choices	(you
must	include	at	least	four	different	activities	for	the	user	to	choose	from),	as	well	as	the	number	of
minutes	that	the	activity	was	performed.	Your	program	should	use	this	information	to	calculate	the

http://www.cdc.gov/healthyweight/calories/
http://www.bmi-calculator.net/bmr-calculator/
http://whatscookingamerica.net/Information/CalorieBurnChart.htm

number	of	calories	expended,	subtract	this	number	from	the	caloric	balance,	and	then	print	the	updated
caloric	balance.

3.	 Quit:	this	option	should	terminate	your	program.

Sample
Program	execution:

Hi!	This	program	will	calculate	your	caloric	balance	for	the	day!
Before	we	can	start,	I	need	some	information	about	you.	Be	honest!	:)

What	is	your	gender	(f	or	m)?	f
What	is	your	age?	23
What	is	your	height	in	inches?	65
What	is	your	weight	in	pounds?	130

Thanks!	Now,	throughout	the	day,	tell	me	each	time	you	eat	or	move.
Your	caloric	balance	is	starting	at	-1417.9	(you	need	to	eat	something)
What	would	you	like	to	do?
[f]	Record	Food	Consumption
[a]	Record	Physical	Activity
[q]	Quit
Enter	an	option:	f
Okay!	How	many	calories	did	you	just	eat?	400
Sweet!	Your	caloric	balance	is	now	-1017.9000000000001

What	would	you	like	to	do?
[f]	Record	Food	Consumption
[a]	Record	Physical	Activity
[q]	Quit
Enter	an	option:	a
Choose	an	activity	to	record
[j]	Jump	rope
[r]	Running
[s]	Sitting
[w]	Walking
Enter	an	option:	j
For	how	many	minutes	did	you	perform	this	activity?	30
Awesome!	Your	caloric	balance	is	now	-1306.5

What	would	you	like	to	do?
[f]	Record	Food	Consumption
[a]	Record	Physical	Activity
[q]	Quit
Enter	an	option:	e
Sorry,	that	option	is	invalid.

What	would	you	like	to	do?
[f]	Record	Food	Consumption
[a]	Record	Physical	Activity
[q]	Quit
Enter	an	option:	a
Choose	an	activity	to	record
[j]	Jump	rope
[r]	Running
[s]	Sitting
[w]	Walking
Enter	an	option:	v
Sorry,	that	option	is	invalid.

What	would	you	like	to	do?
[f]	Record	Food	Consumption
[a]	Record	Physical	Activity
[q]	Quit
Enter	an	option:	f
Okay!	How	many	calories	did	you	just	eat?	twelve
Please	enter	a	number.
Okay!	How	many	calories	did	you	just	eat?	-17
Please	enter	a	number	greater	than	zero.
Okay!	How	many	calories	did	you	just	eat?	0
Please	enter	a	number	greater	than	zero.

Okay!	How	many	calories	did	you	just	eat?	600
Sweet!	Your	caloric	balance	is	now	-706.5

What	would	you	like	to	do?
[f]	Record	Food	Consumption
[a]	Record	Physical	Activity
[q]	Quit
Enter	an	option:	a
Choose	an	activity	to	record
[j]	Jump	rope
[r]	Running
[s]	Sitting
[w]	Walking
Enter	an	option:	r
For	how	many	minutes	did	you	perform	this	activity?	zero
Please	enter	a	number.
For	how	many	minutes	did	you	perform	this	activity?	-17
Please	enter	a	number	greater	than	zero.
For	how	many	minutes	did	you	perform	this	activity?	0
Please	enter	a	number	greater	than	zero.
For	how	many	minutes	did	you	perform	this	activity?	12
Awesome!	Your	caloric	balance	is	now	-842.22

What	would	you	like	to	do?
[f]	Record	Food	Consumption
[a]	Record	Physical	Activity
[q]	Quit
Enter	an	option:	f
Okay!	How	many	calories	did	you	just	eat?	935
Sweet!	Your	caloric	balance	is	now	92.77999999999997

What	would	you	like	to	do?
[f]	Record	Food	Consumption
[a]	Record	Physical	Activity
[q]	Quit
Enter	an	option:	q
Leaving?	You	should	do	this	again	tomorrow.	Stay	healthy!

Instructions
For	this	assignment	you	will	need	to	make	2	files:	 caloric_balance.py 	and	 main.py .	Unit	tests	are	available	for
download.	Your	files	need	to	be	in	the	same	folder	as	the	unittest	files.

You	must	follow	the	specifications	exactly,	but	may	choose	your	own	method	for	solving	the	problem
described	for	each.	Once	you	have	completed	a	function	you	should	run	the	unittest	for	that	function	and
have	it	pass	all	tests.	Fix	any	errors,	warnings,	and/or	failures.

Instructions	for	 caloric_balance.py
Create	a	new	class	 CaloricBalance

Data	Members

weight

Keeps	track	of	the	user’s	entered	weight.	This	is	used	for	calculating	caloric	burn	of	activities.

balance

Keeps	track	of	the	user’s	caloric	balance	throughout	the	day.

Methods
__init__

The	constructor	takes	4	additional	parameters	 gender 	a	string	('f' 	or	 'm'),	 age 	a	float,	 height 	a	float,	and
weight 	a	float.	It	should	store	 weight 	as	a	datamember	and	initialize	 balance 	as	the	negative	value	of	the

https://www.cs.utahtech.edu/cs/1410/labs/caloric_balance.zip

getBMR 	method.	You	can’t	fully	test	this	method	until	you	complete	the	 getBMR 	method.	The	unittests	have
been	created	to	test	appropriately.

cb	=	CaloricBalance('f',	23.0,	65.0,	130.0)

getBMR

This	method	receives	4	additional	parameters	 gender 	a	string	('f' 	or	 'm'),	 age 	a	float,	 height 	a	float,	and
weight 	a	float.	It	should	calculate	and	return	the	BMR	using	the	calculations	above.	If	the	gender	is	not
equal	to	 'm' 	or	 'f' 	then	the	method	returns	 0.0

cb.getBMR('f',	23.0,	65.0,	130.0)	->	1417.9
cb.getBMR('m',	26.0,	70.5,	185.0)	->	1937.1	(rounded)
cb.getBMR('x',	30.0,	60.0,	145.3)	->	0.0

getBalance

This	method	receives	no	additional	parameters	and	returns	the	value	of	the	 balance 	datamember.

cb	=	CaloricBalance('f',	23.0,	65.0,	130.0)
cb.getBalance()	->	-1417.9

recordActivity

This	method	receives	2	additional	parameters	 caloric_burn_per_pound_per_minute 	and	 minutes ,	both	numbers
(integer	or	float).	It	calculates	the	number	of	calories	burned	per	minute	by	multiplying
caloric_burn_per_pound_per_minute 	and	the	 weight 	datamember;	then	calculates	the	total	caloric	burn	by
multiplying	the	previous	calculation	by	the	 minutes .	It	should	subtract	the	total	caloric	burn	from	the
balance 	datamember.

cb	=	CaloricBalance('f',	23.0,	65.0,	130.0)
cb.getBalance()	->	-1417.9
cb.recordActivity(0.074,	30)
cb.getBalance()	->	-1706.5
cb.recordActivity(.009,	85)
cb.getBalance()	->	-1805.95

eatFood

This	method	takes	1	additional	parameter	 calories 	a	number	(integer	or	float).	It	adds	the	calories	to	the
current	 balance 	datamemeber.

cb	=	CaloricBalance('f',	23.0,	65.0,	130.0)
cb.getBalance()	->	-1417.9
cb.eatFood(400)
cb.getBalance()	->	-1017.9	(rounded)
cb.eatFood(800)
cb.getBalance()	->	-217.9	(rounded)

Instructions	for	 main.py
Create	the	following	functions	in	your	 main.py 	file.	You	will	need	to	also	import	and	use	your	CaloricBalance
class	from	 caloric_balance.py .

Because	of	the	user	input	and	output,	not	all	functions	are	easily	tested	with	unit	tests.	Be	sure	to	test	these
functions	by	running	your	program	and	observing	the	correct	behavior.

formatMenu
formatMenuPrompt
formatActivityMenu
getUserString
getUserFloat
createCaloricBalance
recordActivityAction

eatFoodAction
quitAction
applyAction
main

formatMenu

The	function	 formatMenu 	does	not	receive	any	parameters.	It	must	return	a	list	of	strings	that	contains	the
lines	of	the	menu.

formatMenu()	->	['What	would	you	like	to	do?',	'[f]	Record	Food	Consumption',	'[a]	Record	Physical	
Activity',	'[q]	Quit']

formatMenuPrompt

The	function	 formatMenuPrompt 	does	not	receive	any	parameters.	It	must	return	a	string	that	contains	the
prompt	to	ask	the	user	which	menu	option	they	would	like	to	select.

formatMenuPrompt()	->	'Enter	an	option:	'

formatActivityMenu

The	function	 formatActivityMenu 	does	not	receive	any	parameters.	It	must	return	a	list	of	strings	that
contains	the	lines	of	the	activities	menu.	(Your	activities	can	be	different	than	the	example	below)

You	should	choose	at	least	4	activities	you	want	to	include.	They	do	not	have	to	be	the	same	as	what	are
listed	below.

formatActivityMenu()	->	['Choose	an	activity	to	record',	'[j]	Jump	rope',	'[r]	Running',	'[s]	Sitting',	
'[w]	Walking']

getUserString

The	function	 getUserString 	receives	one	parameter,	a	string	that	contains	a	prompt	for	input.	It	must	return
a	string	that	contains	the	text	input	by	the	user,	with	any	leading	and	trailing	whitespace	removed.	If	the
user	gives	an	empty	string,	prompt	them	again,	until	they	give	a	non-empty	string.	Note	that	this	function
interacts	with	the	user,	so	there	will	be	output	to	the	screen	and	input	from	the	keyboard	when	it	is	called.

getUserString("What	is	your	name?	")	->	'It	is	Arthur,	King	of	the	Britons.'
getUserString("What	is	your	quest?	")	->	'To	seek	the	Holy	Grail.'
getUserString("What	is	the	air-speed	velocity	of	an	unladen	swallow?")	->	'What	do	you	mean?	An	African	or	
European	swallow?'

getUserFloat

The	function	 getUserFloat 	receives	one	parameter,	a	string	that	contains	a	prompt	for	input.	It	must	return	a
float	that	contains	the	number	input	by	the	user.	If	the	user	enters	a	non-number	or	a	number	less	than	or
equal	to	zero	it	should	prompt	them	again.	To	accomplish	this	you	might	consider	using	a	try/except	clause
which	allows	you	to	try	an	execute	some	code	(convert	user’s	input	to	a	float)	and	recover	if	it	fails.

Example

try:
				#	try	some	code
				float('this	is	a	string')
except:
				#	this	gets	called	if	anything	above	fails.
				print("you	can't	convert	that	string	to	a	float")

getUserFloat('Type	1.7	')	->	1.7
getUserFloat('Type	1	')	->	1.0
getUserFloat('Type	in	an	integer	')	->	10.0
getUserFloat('Type	in	a	float	')	->	3.142

https://docs.python.org/3/tutorial/errors.html#handling-exceptions

createCaloricBalance

This	function	receives	no	parameters.	It	will	prompt	the	user	for	their	gender	(f	or	m),	their	age	(float	or
int),	their	height	in	inches	(float	or	int),	and	their	weight	in	pounds	(float	or	int).	It	will	create	an	instance	of
CaloricBalance 	and	return	that	instance.

You	will	need	to	import	your	caloric_balance	module.

createCaloricBalance()	->	prompts	user	for	input	and	returns	an	instance	of	CaloricBalance()

recordActivityAction

This	function	receives	one	parameter	a	 CaloricBalance 	instance.	It	prints	the	activities	menu	and	prompts
the	user	to	choose	an	activity.

If	the	user	enters	a	valid	option	it	then	prompts	the	user	to	enter	the	number	of	minutes	of	activity	and	then
calls	the	 recordActivity 	method	on	the	instance	(to	do	this	you	need	to	map	the	activity	option	to	a	value
from	the	activities	table	linked	above).	Lastly	it	should	print	a	success	message	to	the	user	with	their	new
caloric	balance.

If	the	user	enters	an	invalid	option	it	should	print	an	error	message,	then	return.

recordActivity(caloricbalance)	->	prints	messages	to	the	user,	ask	for	input,	and	updates	the	caloric	
balance.

eatFoodAction

This	function	receives	one	parameter	a	 CaloricBalance 	instance.	It	prompts	the	user	to	enter	the	number	of
calories	consumed.	It	then	calls	the	 eatFood 	method	on	the	instance.	Lastly	it	should	print	a	success
message	to	the	user	with	their	new	caloric	balance.

eatFoodAction(caloricbalance)	->	asks	the	user	for	input,	and	updates	the	caloric	balance.

quitAction

This	function	receives	one	parameter	a	 CaloricBalance 	instance.	This	function	will	display	a	message	to	the
user	indicating	the	end	of	the	program.	It	will	then	terminate	the	program	using	 sys.exit(0) .	Be	sure	to
do	the	correct	 import 	statement.	This	function	does	not	return	anything.

quitAction(caloricbalance)	->	the	program	will	end

applyAction

This	function	receives	two	parameters	a	 CaloricBalance 	instance,	and	choice	a	string.	This	function	will	call
the	appropriate	action	function	based	on	the	choice	string.	If	the	choice	string	does	not	match	any	accepted
choices,	it	will	display	a	message	to	the	user.	This	function	does	not	return	anything.

applyAction(caloricbalance,	"f")	->	eatFoodAction	gets	called	and	caloric	balance	is	updated.
applyAction(caloricbalance,	"a")	->	recordActivityAction	get	called	and	caloric	balance	is	updated.
applyAction(caloricbalance,	"q")	->	the	program	will	terminate.
applyAction(caloricbalance,	"x")	->	the	user	will	receive	an	error	message.

main

The	function	 main 	receives	no	parameters,	and	returns	nothing.	This	function	ties	everything	together.
Creates	an	instance	of	CaloricBalance,	repeatedly	asking	the	user	their	choice	and	taking	appropriate
action.	Note:	everything	you	need	to	finish	the	main	function	should	be	contained	in	the	functions	above.

main()	->	the	program	runs.

Finishing	Up
Lastly	add	this	snippet	at	the	bottom	of	your	file	which	will	execute	your	 main() 	function	when	you	run
main.py 	but	will	allow	it	to	be	imported	into	the	unittest	files	without	executing	the	main	function.

if	__name__	==	'__main__':
				main()

Pass-of	instructions
1.	 To	pass	off	this	assignment	you	need	to	show	your	completed	program	to	the	lab	assistants.

Show	them	your	 caloric_balance.py 	and	 main.py 	code
Run	 test_all.py 	-	All	tests	MUST	pass!
Run	 main.py
The	lab	assistant	may	additional	tests	they	want	you	to	run

2.	 Upload	your	 caloric_balance.py 	and	 main.py 	files	to	canvas	(you	may	zip	them),	please	add	a	comment
to	the	top	of	the	files	with	your	name	and	time	your	class	meets.

