
CS	1410:	DNA	Sequencing

Human	Genome	Project
In	order	to	complete	the	Human	Genome	Project,	geneticists	were	required	to	sequence	DNA.	This	process
determines	the	correct	order	of	DNA	strands,	which	are	made	from	four	bases:	adenine	 A ,	guanine	 G ,
cytosine	 C ,	and	thymine	 T .	To	do	this,	the	ends	of	two	incomplete	DNA	strands	are	compared	to	see	if	they
match	when	overlapped.	If	so,	it	is	possible	that	these	DNA	strands	are	two	pieces	of	a	larger	whole.
Essentially,	the	goal	of	DNA	sequencing	is	to	piece	together	tiny	fragments	of	the	much	larger	original,
called	a	genome.

Here	is	an	example	of	two	DNA	strands	that	match	when	overlapped:

Strand	1:	ACGGACATAGTCATT
Strand	2:						CATAGTCATTTCATG
Combined:	ACGGACATAGTCATTTCATG

Assignment
You	will	make	a	program	to	find	the	best	match	between	a	target	DNA	strand	and	several	candidate	DNA
strands.	Your	program	will	read	the	target	DNA	strand	from	one	file	(containing	just	one	line)	and	the
candidate	DNA	strands	from	a	second	file	(containing	one	line	for	each	of	the	candidate	DNA	strands).	See
the	examples	below.

target_strand.txt:

TTATAGTGATATACGTGCTTAGGTAGTGCAGAGACACAACTTATAGAGTGAGGCCAGCTCACGAGCTCTAGAAGCCCAAA

candidate_strands.txt:

TATTGTGCTCTATAGCTCCAGGCACATCCCTTGACGGATTGGGGACTGTCTTGACGAAAGTTCGGAGGTAGAAAAGTCCA
GACGACACCCTGGCAAAGGTCACGTCATGGGTGGAGTACTTATACCGGCAGCAGAGCGATCTGCTACCTATCTTCATGAT
CACGAGCTCTAGAAGCCCAAACTGTGACGCAATTGCCGGGCTAAAACTATGCTAAGAAATCCCCATTACCAGAGTCTTAG
TGAGCCGTTGGGCAGTTAACGGATTTTACTCGTCGCTGCCTGAAGTGCCAAATTTACCAAAAACCGGATAACTTCATGCA
CTTATAGAGTGAGGCCAGCTCACGAGCTCTAGAAGCCCAAATTGCTACTGTGCCGCTGCGCACCGCATGATCGCAGTCAG
TTAGAGGAATTGGACGGCACTCGGACACAAGCTCACGCCCCATACTTTAGCACCGAATATCGACTAAGCATAGTTGATCT
AGCAAGAGTTGGTATCTCTAGGGGCTTCTCCGGACGCAACGACGCGTCTGACAGTTCAGGTTGTTATGACCCGGGTGTGA
CTATGGTTAGGCAACTTCCACGCTATCCCTCGACCACGGCTCGTGGAGCCGTACCGGTGTATTTTGTTGCTGCTAATATT
GTAGCACGCAGTTCGAGTCACCCGGAAGCAGCGAAACGTTCGGCAACTACAAACTCCAATCTTGTATTCGGGTGCCTTTT
CGATTGTCTGTGTTCTGCATGAGCACAATAAGTACAAGTCGAACTGGTATTTACTAAAGTCCGCATATTGTACGGTACGT

In	order	to	determine	which	candidate	strand	is	the	best	match,	you	should	compare	the	target	strand	to
each	of	the	candidate	strands.	The	best	match	is	the	candidate	strand	with	the	largest	number	of
overlapping	bases	(the	number	of	contiguous	bases	that	are	in	common).	For	example,	the	two	strands
shown	above	have	10	overlapping	bases.	To	make	your	job	easier,	simply	compare	the	end	of	the	target
strand	to	the	beginning	of	each	candidate	strand	(you	do	not	need	to	compare	the	beginning	of	the	target
strand	to	the	ends	of	the	candidate	strands).

Instructions
For	this	assignment	you	need	to	download	the	dnaSequence.zip	folder.	You	should	write	your	code	in	file
named	 dnaSequencing.py .	Your	file	should	be	added	to	the	same	folder	as	the	downloaded	files.

The	download	includes	unittest	files	which	are	designed	to	check	your	completion	of	the	functions	below.
This	is	the	same	way	CodeGrinder	grades	drills.	You	should	complete	each	function	one-at-a-time.	You	are
welcome	and	encouraged	to	take	a	look	at	the	unittest	file	and	see	how	it	works.	It	is	basically	several
automated	calls	to	your	code	and	checks	for	expected	outcome.

Your	assignment	is	to	create	the	following	functions.	The	functionality	for	each	function	is	described	below.
You	must	follow	the	specifications	exactly,	but	may	choose	your	own	method	for	solving	the	problem
described	for	each.	Once	you	have	completed	a	function	you	should	run	the	unittest	for	that	function	and
have	it	pass	all	tests.	Fix	any	errors,	warnings,	and/or	failures.

https://www.cs.utahtech.edu/cs/1410/labs/dnaSequence.zip


fileToList
returnFirstString
strandsAreNotEmpty
strandsAreEqualLengths
candidateOverlapsTarget
findLargestOverlap
findBestCandidate
joinTwoStrands
main

fileToList

The	function	 fileToList 	receives	one	parameter	 filename 	a	string.	It	should	return	a	list	of	the	lines	in	the
file.	Remove	the	newline	character	from	the	end	of	each	line.	If	the	file	is	empty	or	does	not	exist	return	an
empty	list.

fileToList('tar_easy.txt')	->	['ABCDEFG']
fileToList('can_easy.txt')	->	['GHHHHHH',	'FGHHHHH',	'EFGHHHH',	'CDEFGHH',	'DEFGHHH']
fileToList('empty_file.txt')	->	[]
fileToList('file_does_not_exist.txt')	->	[]

returnFirstString

The	function	 returnFirstString 	receives	one	parameter	 strings 	a	list	of	strings	and	returns	the	first	string.
If	the	list	is	empty	the	function	should	return	an	empty	string.

returnFirstString(['aaa',	'bbb',	'ccc'])	->	'aaa'
returnFirstString([])	->	''

strandsAreNotEmpty

The	function	 strandsAreNotEmpty 	receives	two	parameters	 strand1 	and	 strand2 ,	both	strings.	It	returns	 True
if	both	strands	have	a	length	greater	than	zero,	or	 False 	otherwise.

strandsAreNotEmpty('',	'aaa')	->	False
strandsAreNotEmpty('aaa',	'bbb')	->	True
strandsAreNotEmpty('aaa',	'')	->	False

strandsAreEqualLengths

The	function	 strandsAreEqualLengths 	receives	two	parameters	 strand1 	and	 strand2 ,	both	strings.	It	returns
True 	if	the	length	of	both	strands	are	equal	or	 False 	otherwise.

strandsAreEqualLengths('aaa',	'bbb')	->	True
strandsAreEqualLengths('aa',	'bbb')	->	False
strandsAreEqualLengths('aaa',	'bb')	->	False

candidateOverlapsTarget

The	function	 cadidateOverlapsTarget 	receives	three	parameters	 target 	a	string,	 candidate 	a	string,	and
overlap 	an	integer.	It	checks	to	see	if	the	target	and	candidate	strands	have	an	overlap	of	 overlap
characters.	The	function	should	return	 True 	if	they	overlap	or	 False 	otherwise.

target	=	'ABBBBBA'
candidate	=	'BABBBAA'
candidateOverlapsTarget(target,	candidate,	1)	->	False
candidateOverlapsTarget(target,	candidate,	2)	->	True
candidateOverlapsTarget(target,	candidate,	3)	->	False
candidateOverlapsTarget(target,	candidate,	4)	->	False
candidateOverlapsTarget(target,	candidate,	5)	->	False
candidateOverlapsTarget(target,	candidate,	6)	->	False
candidateOverlapsTarget(target,	candidate,	7)	->	False



findLargestOverlap

The	function	 findLargestOverlap 	receives	two	parameters	 target 	and	 candidate ,	both	strings.	It	should	find
the	largest	overlap	and	return	the	size	of	the	overlap.	If	either	strand	is	empty	or	the	strands	are	not	the
same	length,	return	 -1 .	Use	the	functions	you	have	already	written,	strandsAreNotEmpty	and
strandsAreEqualLengths.

findLargestOverlap('abcd','cdef')	->	2
findLargestOverlap('TAGGAG',	'GGTAGA')	->	1
findLargestOverlap('aaaa',	'bbbb')	->	0
findLargestOverlap('',	'hijk')	->	-1
findLargestOverlap('abc',	'abcd')	->	-1

findBestCandidate

The	function	 findBestCandidate 	receives	two	parameters	 target 	a	string,	and	 candidates 	a	list	of	strings.	It
examines	each	candidate	in	the	candidates	list	and	determines	the	candidate	with	the	largest	overlap.	You
can	use	the	function	findLargestOverlap	to	do	this.	If	two	candidates	have	the	same	overlap	keep	the	first
one.	The	function	returns	a	tuple	containing	the	candidate	string	with	the	largest	overlap	and	the	overlap.	If
no	candidates	overlap	you	should	return	an	empty	string	for	the	candidate	and	0	for	the	overlap.

findBestCandidate('ABC',	['BBC',	'BCC',	'BCA',	'CBA'])	->	('BCC',	2)
findBestCandidate('AAA',	['BBB',	'CCC'])	->	('',	0)
findBestCandidate('ABCD',	['ABCC',	'CDCD',	'BCDE'])	->	('BCDE',	3)

joinTwoStrands

The	function	 joinTwoStrands 	receives	three	parameters	 target 	a	string,	 candidate 	a	string,	and	 overlap 	an
integer.	It	joins	the	target	and	candidate	strands	together	merging	them	and	returns	the	joined	strand.

joinTwoStrands('abcef',	'cefgh',	3)	->	'abcefgh'
joinTwoStrands('TAGAGGT',	'AGGTTTG',	4)	->	'TAGAGGTTTG'
joinTwoStrands('TAGAGGT',	'',	0)	->	'TAGAGGT'

main

The	function	 main 	receives	no	parameters	and	returns	nothing.	The	function	should	start	by	asking	the	user
for	the	filename	of	the	target	strand	file	and	candidate	strands	file	(hint:	use	functions;	fileToList,
returnFirstString).	After	determining	which	of	the	candidate	DNA	strands	is	the	best	match	(hint:	use
findBestCandidate),	print	the	combined	strand	(hint:	use	joinTwoStrands).

python	dnaSequencing.py
Target	strand	filename:	tar1.txt
Candidate	strands	filename:	can1.txt
GTCGCGTTCAGGCGCATTAAGTTAGTCGGAG

Finishing	Up
Lastly	add	this	snippet	at	the	bottom	of	your	file	which	will	execute	your	 main() 	function	when	you	run
dnaSequencing.py	but	will	allow	it	to	be	imported	into	the	unittest	files	without	executing	the	main	function.

if	__name__	==	'__main__':
				main()

Pass-off	instructions
1.	 To	pass	off	this	assignment	you	need	to	show	your	completed	program	to	the	lab	assistants.

Show	them	your	 dnaSequencing.py 	code
Run	 test_all.py 	-	All	tests	MUST	pass!
Run	 dnaSequencing.py
The	lab	assistant	may	additional	tests	they	want	you	to	run

2.	 Upload	your	dnaSequencing.py	file	to	canvas,	please	add	a	comment	to	the	top	of	the	file	with	your



name	and	time	your	class	meets.


