
CS	1410:	ISBN	Index
If	you’re	familiar	with	books,	then	you’re	probably	familiar	with	an	ISBN.	ISBN	is	an	acronym	for
International	Standard	Book	Number.	In	many	countries,	an	ISBN	agency	exists	to	assign	a	unique	ISBN	to
each	book	that	is	published	in	that	country.	By	doing	so,	the	vast	majority	of	books	that	get	published
internationally	can	be	identified	by	a	single,	unique	ISBN,	and	this	makes	it	easy	for	anyone	to	describe	or
locate	a	book,	simply	by	knowing	its	ISBN.

Assignment
Your	program	will	gather,	record,	and	return	a	collection	of	book	titles,	each	identified	by	the	book’s	ISBN.
Your	program	will	feature	a	very	simple	menu	that	allows	the	user	to	perform	any	one	of	four	operations,
one	at	a	time,	repeatedly	until	the	user	chooses	to	quit	the	program.	When	prompted,	the	user	may	select
one	of	the	four	operations	by	inputting	a	unique	letter	corresponding	to	one	of	the	operations.	The	four
operations	(and	their	unique	letters)	are:

1.	 [r]	Record	a	Book:	This	operation	asks	the	user	for	two	pieces	of	information,	an	ISBN	and	a	book
title.	Your	program	will	record	the	book’s	title	and	associate	it	to	the	given	ISBN.	Use	a	dictionary	for
this.	You	should	assume	that	the	ISBN	is	unique,	and	if	a	book	was	previously	recorded	using	this	ISBN,
simply	disregard	the	old	record	and	replace	it	with	the	new	one.

2.	 [f]	Find	a	Book:	This	operation	asks	the	user	for	one	piece	of	information:	an	ISBN.	Your	program	will
attempt	to	find	an	existing	record	with	this	ISBN.	If	found,	print	the	book	title	associated	to	this	ISBN.
If	not	found,	print	a	message	indicating	that	no	such	book	could	be	found.

3.	 [l]	List	all	Books:	This	operation	does	not	ask	the	user	for	any	additional	information.	Your	program
will	immediately	print	a	list	of	all	known	ISBN	records,	one	per	line.	Each	line	should	contain	the	ISBN
followed	by	the	book	title	that	is	associated	to	the	ISBN.

4.	 [q]	Quit:	When	this	operation	is	selected,	your	program	will	print	a	friendly	goodbye	message	to	the
user	and	then	terminate.

5.	 Something	else?	If	the	user	enters	a	different	letter	or	phrase,	print	a	message	informing	the	user	that
this	option	is	invalid,	and	allow	them	to	try	again.

Extra	Challenges
Add	a	bit	of	friendliness	to	your	program!	When	your	program	first	starts,	before	the	menu	options	are
first	printed,	display	a	brief	message	explaining	your	program	and	how	to	use	it.

Because	this	assignment	does	not	require	you	to	save	the	ISBN	records	to	a	file,	you	may	assume	that
all	records	will	be	lost	when	the	program	quits.	However,	wouldn’t	it	be	useful	if	the	records	were	not
lost?	Consider	upgrading	your	program	to	write	all	records	to	a	file	just	before	the	program	quits,	and
then	also	load	any	records	from	the	same	file	when	the	program	is	started	again.

Hints
Before	starting,	practice	using	dictionaries.	You’ll	need	to	know	how	to	create	a	dictionary,	set	a	value
by	key,	retrieve	a	value	by	key,	check	if	a	key	exists	and	iterate	through	all	keys	and	their	values.

Sample
Program	execution:

What	would	you	like	to	do?
[r]	Record	a	Book
[f]	Find	a	Book
[l]	List	all	Books
[q]	Quit
Enter	an	option:	r
Enter	an	ISBN:	978-0439708180
Enter	a	book	title:	Harry	Potter	and	the	Sorcerer's	Stone
Book	saved!

What	would	you	like	to	do?
[r]	Record	a	Book



[f]	Find	a	Book
[l]	List	all	Books
[q]	Quit
Enter	an	option:	r
Enter	an	ISBN:	978-0439023528
Enter	a	book	title:	The	Hunger	Games
Book	saved!

What	would	you	like	to	do?
[r]	Record	a	Book
[f]	Find	a	Book
[l]	List	all	Books
[q]	Quit
Enter	an	option:	f
Enter	an	ISBN:	978-0439023528
Book	found:	The	Hunger	Games

What	would	you	like	to	do?
[r]	Record	a	Book
[f]	Find	a	Book
[l]	List	all	Books
[q]	Quit
Enter	an	option:	f
Enter	an	ISBN:	978-0439708180
Book	found:	Harry	Potter	and	the	Sorcerer's	Stone

What	would	you	like	to	do?
[r]	Record	a	Book
[f]	Find	a	Book
[l]	List	all	Books
[q]	Quit
Enter	an	option:	l		
1)	978-0439023528:	The	Hunger	Games
2)	978-0439708180:	Harry	Potter	and	the	Sorcerer's	Stone

What	would	you	like	to	do?
[r]	Record	a	Book
[f]	Find	a	Book
[l]	List	all	Books
[q]	Quit
Enter	an	option:	x
Sorry,	that	option	is	invalid.

What	would	you	like	to	do?
[r]	Record	a	Book
[f]	Find	a	Book
[l]	List	all	Books
[q]	Quit
Enter	an	option:	q
Bye!	See	you	next	time!

Instructions
Create	your	program	in	the	file	 isbn_index.py .	Unit	tests	are	available	for	download.

Your	assignment	is	to	create	the	following	functions.	The	functionality	for	each	function	is	described	below.
You	must	follow	the	specifications	exactly,	but	may	choose	your	own	method	for	solving	the	problem
described	for	each.	Once	you	have	completed	a	function	you	should	run	the	unittest	for	that	function	and
have	it	pass	all	tests.	Fix	any	errors,	warnings,	and/or	failures.

Because	of	the	user	input	and	output,	not	all	functions	are	easily	tested	with	unit	tests.	Be	sure	to	test	these
functions	by	running	your	program	and	observing	the	correct	behavior.

createIndex
recordBook
findBook
listBooks
formatMenu
formatMenuPrompt
getUserChoice
getISBN

https://www.cs.utahtech.edu/cs/1410/labs/isbnTests.zip


getTitle
recordBookAction
findBookAction
listBooksAction
quitAction
applyAction
main

createIndex

The	function	 createIndex 	does	not	receive	any	parameters.	It	must	return	an	empty	dictionary	for	the	index.

createIndex()	->	{	}

recordBook

The	function	 recordBook 	receives	three	parameters,	the	index	dictionary,	the	ISBN	of	a	book,	and	the	title	of
a	book.	Both	the	ISBN	and	title	are	strings.	It	must	assign	the	title	to	the	ISBN	in	the	index.	It	does	not
return	anything.	However,	the	dictionary	will	be	modified	as	a	result	of	this	function’s	work.

recordBook(	index,	"978-0439023528",	"The	Hunger	Games"	)	->	index	should	now	contain	the	book

findBook

The	function	 findBook 	receives	two	parameters,	the	index	dictionary	and	the	ISBN	of	a	book.	The	ISBN	is	a
string.	The	function	returns	the	title	of	the	book	with	the	matching	ISBN,	if	it	exists.	If	the	ISBN	is	not	in	the
dictionary,	then	it	returns	the	empty	string.

findBook(	index,	"978-0439023528"	)	->	"The	Hunger	Games"
findBook(	index,	"888-8888888888"	)	->	""

listBooks

The	function	 listBooks 	receives	one	parameter,	the	index	dictionary.	The	function	returns	a	list	of	strings.
Each	string	in	the	list	is	a	line	that	shows	a	sequence	number,	the	ISBN	and	the	title	of	a	book.	See	the
examples	for	the	format	of	the	lines.	If	there	are	no	books	in	the	index,	this	function	returns	an	empty	list.

listBooks(	empty_index	)	->	[	]
listBooks(	index	)	->	[	"1)	978-0439023528:	The	Hunger	Games",	"2)	978-0439708180:	Harry	Potter	and	the	
Sorcerer's	Stone"	]

formatMenu

The	function	 formatMenu 	does	not	receive	any	parameters.	It	must	return	a	list	of	strings	that	contains	the
lines	of	the	menu.

formatMenu()	->	[	'What	would	you	like	to	do?',	'[r]	Record	a	Book',	'[f]	Find	a	Book',	'[l]	List	all	
Books',	'[q]	Quit'	]

formatMenuPrompt

The	function	 formatMenuPrompt 	does	not	receive	any	parameters.	It	must	return	a	string	that	contains	the
prompt	to	ask	the	user	which	menu	option	they	would	like	to	select.

formatMenuPrompt()	->	'Enter	an	option:	'

getUserChoice

The	function	 getUserChoice 	receives	one	parameter,	a	string	that	contains	a	prompt	for	input.	It	must	return
a	string	that	contains	the	text	input	by	the	user,	with	any	leanding	and	trailing	whitespace	removed.	If	the



user	gives	an	empty	string,	prompt	them	again,	until	they	give	a	non-empty	string.	Note	that	this	function
interacts	with	the	user,	so	there	will	be	output	to	the	screen	and	input	from	the	keyboard	when	it	is	called.

getUserChoice(	"Hello?	"	)	->	'some	text'
getUserChoice(	"Choose"	)	->	'othertext'

getISBN

The	function	 getISBN 	does	not	receive	any	parameters.	It	must	prompt	the	user	for	an	ISBN,	and	return	the
ISBN	input	by	the	user.	The	user’s	response	must	not	have	any	leading	or	trailing	whitespace.	It	must
repeatedly	ask	the	user	for	an	ISBN,	until	the	user	gives	a	non-empty	response.	Note,	you	should	probably
call	 getUserChoice 	as	part	of	this	function.

getISBN(	)	->	'978-0439708180'
getISBN(	)	->	'user-typed-this'

getTitle

The	function	 getTitle 	does	not	receive	any	parameters.	It	must	prompt	the	user	for	a	book	title,	and	return
the	title	input	by	the	user.	The	user’s	response	must	not	have	any	leading	or	trailing	whitespace.	It	must
repeatedly	ask	the	user	for	a	title,	until	the	user	gives	a	non-empty	response.	Note,	you	should	probably	call
getUserChoice 	as	part	of	this	function.

getTitle(	)	->	"Harry	Potter	and	the	Sorcerer's	Stone"
getTitle(	)	->	'user-typed-this	too.		Weird!'

recordBookAction

The	function	 recordBookAction 	receives	the	index	dictionary	as	a	parameter.	It	must	ask	the	user	for	the
ISBN	and	title	of	a	book,	and	add	it	to	the	dictionary.	This	function	does	not	return	anything.	However,	it	has
the	side	effect	of	adding	an	entry	to	the	dictionary.	It	also	interacts	with	the	user	through	input	and	output.
Note	you	should	be	using	some	of	the	above	functions	to	complete	this	function.

recordBookAction(	index	)	->	the	index	dictionary	should	be	modified

findBookAction

The	function	 findBookAction 	receives	the	index	dictionary	as	a	parameter.	It	must	ask	the	user	for	the	ISBN
a	book.	If	the	book	exists	in	the	dictionary,	it	will	display	the	book.	If	the	book	does	not	exist	in	the
dictionary,	it	will	give	the	user	a	message	to	let	them	know.	The	function	does	not	return	anything,	and
should	not	change	the	index.

findBookAction(	index	)	->	the	index	dictionary	should	not	be	modified

listBooksAction

The	function	 listBooksAction 	receives	the	index	dictionary	as	a	parameter.	It	will	display	all	of	the	books	in
the	dictionary	in	the	format	shown	in	the	examples.	If	there	are	no	books	in	the	dictionary,	it	must	display	a
message	to	inform	the	user.	The	function	does	not	return	anything.	The	function	must	not	change	the
dictionary.

listBooksAction(	index	)	->	the	index	dictionary	should	not	be	modified

quitAction

The	function	 quitAction 	receives	the	index	dictionary	as	a	parameter.	This	function	will	display	a	message	to
the	user	indicating	the	end	of	the	program.	It	will	then	terminate	the	program	using	 sys.exit(	0	) .	Be	sure
to	do	the	correct	 import 	statement.	This	function	does	not	return	anything.

quitAction(	index	)	->	the	program	will	end



applyAction

The	function	 applyAction 	receives	the	index	dictionary	and	a	choice	string	as	parameters.	This	function	will
call	the	appropriate	action	function	based	on	the	choice	string.	If	the	choice	string	does	not	match	any
accepted	choices,	it	will	display	a	message	to	the	user.	This	function	does	not	return	anything.	The
dictionary	may	be	changed	as	a	result	of	the	chosen	action.

applyAction(	index,	"r"	)	->	the	dictionary	will	have	a	new	book	added.
applyAction(	index,	"f"	)	->	the	user	will	select	a	book	to	display.
applyAction(	index,	"l"	)	->	the	contents	of	the	dictionary	will	be	displayed.
applyAction(	index,	"q"	)	->	the	program	will	terminate.
applyAction(	index,	"bad-choice"	)	->	the	user	will	receive	a	message.

main

The	function	 main 	receives	no	parameters,	and	returns	nothing.	This	function	ties	everything	together.
Creating	an	index,	repeatedly	asking	the	user	their	choice	and	taking	action.

main(	)	->	the	program	runs.

Finishing	Up
Lastly	add	this	snippet	at	the	bottom	of	your	file	which	will	execute	your	 main() 	function	when	you	run
isbn_index.py 	but	will	allow	it	to	be	imported	into	the	unittest	files	without	executing	the	main	function.

if	__name__	==	'__main__':
				main()

Pass-off	instructions
1.	 To	pass	off	this	assignment	you	need	to	show	your	completed	program	to	the	lab	assistants.

Show	them	your	 isbn_index.py 	code
Run	 test_all.py 	-	All	tests	MUST	pass!
Run	 isbn_index.py
The	lab	assistant	may	additional	tests	they	want	you	to	run

2.	 Upload	your	 isbn_index.py 	file	to	canvas,	please	add	a	comment	to	the	top	of	the	file	with	your	name
and	time	your	class	meets.


