
CS	1410:	Word	Zap!

Game	rules:	each	player	begins	the	game	with	seven	letters.	Players	take	turns	eliminating	their	letters	by
forming	words	that	use	their	letters	(but	only	their	letters),	and	the	first	player	to	eliminate	all	of	their
letters	wins.	If	a	player	cannot	form	a	valid	word	using	their	letters,	they	may	choose	to	pass	their	turn	and
receive	an	additional	letter.	Letters	are	selected	randomly	by	the	game.

Assignment
Your	assignment	is	to	create	a	Python	program	that	uses	a	class	that	represents	a	player	to	play	the	game
described	above	for	two	or	more	players.

Your	program	will	start	by	asking	how	many	players	will	play	the	game,	and	then	ask	for	the	name	of	each	of
the	players.	Seven	random	letters	should	be	assigned	to	each	player,	and	then	game	play	should	begin.

For	each	player,	in	turn,	your	program	will	print	the	player’s	name	and	their	letters,	and	then	ask	the	player
for	a	word.	Your	program	should	check	to	ensure	that	the	word	entered	by	the	player	consists	only	of	the
player’s	letters	(and	also	ensure	that	the	player	does	not	use	a	letter	more	times	than	that	letter	occurs	in
the	player’s	letters).

If	the	word	contains	a	letter	that	the	player	does	not	have,	then	this	word	should	be	discarded	without	any
effect	to	the	game,	and	the	player	should	be	asked	for	another	word.	Otherwise,	all	letters	used	by	the	word
should	be	eliminated	from	the	player’s	letters.

If	the	player	does	not	enter	a	word,	then	their	turn	should	be	considered	a	pass,	and	an	additional	random
letter	should	be	added	to	the	player’s	letters.

After	the	last	player	completes	their	turn,	game	play	should	continue	with	the	first	player	and	proceed	until
a	player	eliminates	all	of	their	letters.	At	this	point,	the	name	of	the	winner	should	be	printed	and	your
program	should	terminate.	(You	can	choose	if	the	game	waits	to	the	end	of	a	round	to	check	for	wins,	or	if	it
checks	after	every	player’s	turn.)

Sample
Program	execution:

Welcome!	Time	to	play!	Try	to	use	all	of	your	letters.
The	first	player	that	uses	all	of	their	letters	wins!

How	many	players	will	be	playing?	2
Enter	the	name	for	player	#1:	Luke
Enter	the	name	for	player	#2:	Leia

Great!	Now	we	can	play!

Luke,	it	is	your	turn!
Your	letters	are:	s	n	s	a	w	n	o
Enter	a	word	to	play	(or	press	enter	to	pass)	saw
Great	job!

Leia,	it	is	your	turn!
Your	letters	are:	t	a	h	e	e	d	b
Enter	a	word	to	play	(or	press	enter	to	pass)	heed
Great	job!

Okay!	Next	round!

Luke,	it	is	your	turn!
Your	letters	are:	n	s	n	o
Enter	a	word	to	play	(or	press	enter	to	pass)	sons
Check	your	letters	and	try	again!

Luke,	it	is	your	turn!
Your	letters	are:	n	s	n	o
Enter	a	word	to	play	(or	press	enter	to	pass)	



You	get	another	letter,	"l"!

Leia,	it	is	your	turn!
Your	letters	are:	t	a	b
Enter	a	word	to	play	(or	press	enter	to	pass)	bat
Great	job!

Leia	wins!!

Instructions
For	this	assignment	you	will	need	to	make	2	files:	 player.py 	and	 main.py .	Unlike	the	previous	assignments
we	are	only	going	to	provide	unit	tests	for	your	Player	class.	Your	files	need	to	be	in	the	same	folder	as	the
unittest	files.

You	must	follow	the	specifications	exactly,	but	may	choose	your	own	method	for	solving	the	problem
described	for	each.

Instructions	for	 player.py
Create	a	new	class	 Player

Data	Members

name

A	string	containing	the	user’s	entered	name.

letters

A	list	containing	the	letters	in	the	player’s	hand.

Methods
__init__

The	constructor	takes	1	parameter	 name 	a	string.	It	should	store	the	name	and	initialize	a	data	member
letters 	a	list	to	store	the	users	letters.

p	=	Player('Luke')

getName

This	method	receives	no	additional	parameters	and	returns	the	value	of	the	 name 	data	member.

p	=	Player('Leia')
p.getName()	->	'Leia'

getLetters

This	method	receives	no	additional	parameters	and	returns	the	value	of	the	 letters 	data	member.	This
should	currently	return	an	empty	list	until	the	next	method	is	created.

p	=	Player('Luke')
p.getLetters()	->	[]

drawLetter

This	method	adds	a	randomly	chosen	letter	and	adds	it	to	the	player’s	list	of	letters,	it	returns	the	letter	the
player	drew.	You	might	consider	using	the	code	below	to	choose	your	letter	from	(it	is	the	character
frequency	of	letters	in	a	popular	anagram	game)

https://www.cs.utahtech.edu/cs/1410/labs/word_zap.zip


letters	=	
'aaaaaaaaabbccddddeeeeeeeeeeeeffggghhiiiiiiiiijkllllmmnnnnnnooooooooppqrrrrrrssssttttttuuuuvvwwxyyz'

example	usage:

p	=	Player('Leia')
p.getLetters()	->	[]
p.drawLetter()	->	'a'	#	random	letter
p.getLetters()	->	['a']
p.drawLetter()	->	'n'	#	random	letter
p.getLetters()	->	['a',	'n']

After	you	finish	this	method,	update	your	constructor	to	call	it	7	times	so	a	player	will	start	out	with	7
random	letters	in	their	hand.	Note:	because	the	letters	are	chosen	at	random	your	output	will	be	different
than	the	examples.

p	=	Player('Luke')
p.getLetters()	->	['n',	'e',	'f',	'g',	'e',	'a',	'z']

p2	=	Player('Leia')
p2.getLetters()	->	['u',	's',	'b',	'a',	'c',	'e',	'n']

printLetters

This	method	takes	the	user’s	letters	and	formats	them	into	a	pretty	printed	form.	It	should	return	a	string	of
the	letters	separated	by	a	single	space.	There	should	be	no	trailing	space.

p2	=	Player('Leia')
p2.getLetters()	->	['u',	's',	'b',	'a',	'c',	'e',	'n']
p2.printLetters()	->	'u	s	b	a	c	e	n'

checkWord

This	method	takes	1	additional	parameter	 word 	a	string.	If	the	word	contains	a	letter	that	the	player	does
not	have,	or	the	player	does	not	have	enough	copies	of	the	letter	it	should	return	 False .	Otherwise,	update
the	player’s	current	letters	removing	the	letters	used	to	play	the	word	and	then	return	 True .

p	=	Player('Luke')
#	you	might	consider	temporarily	forcing	the	letters	while	testing
#	make	sure	to	reference	your	data	member	storing	the	letters.
p.letters	=	['n',	'e',	'f',	'g',	'e',	'a',	'z']
p.getLetters()	->	['n',	'e',	'f',	'g',	'e',	'a',	'z']
p.checkWord('feed')	->	False
p.getLetters()	->	['n',	'e',	'f',	'g',	'e',	'a',	'z']
p.checkWord('gag')	->	False
p.getLetters()	->	['n',	'e',	'f',	'g',	'e',	'a',	'z']
p.checkWord('gene')	->	True
p.getLetters()	->	['f',	'a',	'z']

Instructions	for	 main.py
We	are	not	providing	unittests	for	 main.py 	because	it	is	too	difficult	to	test	a	program	this	dynamic,	we	will
have	to	rely	on	Acceptance	Testing	to	verify	it	works	as	expected.	It	is	up	to	you	to	figure	out	how	to	finish
the	game	using	the	player	class.	Here	is	a	list	of	functions	that	might	be	useful	to	you.	You	are	not	required
to	create	any	of	them.	As	you	work	on	this	if	you	see	any	other	functions	that	might	be	useful	to	other
students	feel	free	to	suggest	them.

getUserInt 	-	Similar	to	 getUserFloat 	from	the	previous	2	assignments	but	instead	of	casting	the	user
input	to	a	 float ,	cast	it	to	an	 int
getUserString 	-	Similar	to	 getUserString 	from	previous	assignments,	except	an	empty	string	should	be
ok	(so	a	user	can	skip	their	turn)
getPlayers 	-	Ask	the	user	how	many	players	will	be	playing	(consider	using	 getUserInt ).	Ask	the	user	for
a	name	and	create	an	instance	of	 Player 	for	the	number	of	entered	players.	Return	a	list	of	the	 Player
instances.
convertToLower 	-	Convert	a	user’s	entered	 word 	to	lowercase.	So	if	they	type	in	an	 A 	it	counts	as	 a .



Your	file	should	consist	of	of	 main() 	function	which	is	called	to	execute	your	program.

Pass-off	instructions
1.	 To	pass	off	this	assignment	you	need	to	show	your	completed	program	to	the	lab	assistants.

Show	them	your	 player.py 	and	 main.py 	code
Run	 test_all.py 	-	All	tests	MUST	pass!
Run	 main.py
The	lab	assistants	may	have	additional	tests	they	want	you	to	run.

2.	 Upload	your	 player.py 	and	 main.py 	files	to	canvas	(you	may	zip	them),	please	add	a	comment	to	the	top
of	the	files	with	your	name	and	time	your	class	meets.


