
Computer Organization and Architecture
RISC-V 64 Assembly Language

Utah Tech University

Spring 2025

(Utah Tech University) CS 2810 Spring 2025 1 / 27

Functions Calling Functions

Calling Functions

To implement functions/procedures, we must be able to:

Jump to the code that implements the function
Return to the jump site when it is finished
Pass arguments to the function
Get return values back from the function

(Utah Tech University) CS 2810 Spring 2025 2 / 27

Functions Calling Functions

Call and Return

Here is code that
calls a function with two arguments (a0 and a1)
then uses the return value (a0) as the argument to the exit
system call

jal is the jump and link instruction. It
jumps to address 0x1088 (loads that address into the PC)
copies the address 0x1080 (the instruction following jal,
where the function should return to) to the return address,
a.k.a. x1 or ra.

The ret instruction
copies the value from ra back into the PC, effectively
jumping back to the the instruction after the jal

The actual jump target address is computed by skipping
forward 3 instructions or 12 bytes. The immediate field
of the jal instruction would be 12 in this case (since it
is added to the PC when the jump is executed), but the
assembler and disassembler show this as the target
address.

1074: 00500513 li a0,5
1078: 00700593 li a1,7
107c: 00c000ef jal ra,0x1088
1080: 05d00893 li a7,93
1084: 00000073 ecall
1088: 00b50533 add a0,a0,a1
108c: 00008067 ret

(Utah Tech University) CS 2810 Spring 2025 3 / 27

Functions Calling Functions

Call and Return

Here is the same code run through our simulator:

4212: 00500513 li a0, 5 a0 <- 5
4216: 00700593 li a1, 7 a1 <- 7
4220: 00c000ef jal 12 ra <- 4224, pc <- 4232
4232: 00b50533 add a0, a0, a1 a0 <- 12
4236: 00008067 ret pc <- 4224
4224: 05d00893 li a7, 93 a7 <- 93
4228: 00000073 ecall exit(12)

This traces the instructions in the order they are executed, while the disassembly shows them in the order the instructions are
laid out in memory.

(Utah Tech University) CS 2810 Spring 2025 4 / 27

Functions Calling Functions

Call and Return

Here is the original source code
start is the entry point for every program

we use a label for the function add2 and let the assembler
compute the address
we use another label for the system call number

Note the differences between the call and the return
jal has the (relative) address hard-coded in the
instruction

it always branches to the same place
it encodes a relative address since the branch source and
target are fixed

the return address is compute on-the-fly by jal and
stored in a register for ret to use

the function could be called from many different places in the
program
jal computes the full address 0x1080 and stores it in ra
it needs the ability to branch back to a different place each
time

What happens if add2 needs to call a function?

_start: li a0, 5
li a1, 7
jal add2
li a7, sys_exit
ecall

add2: add a0, a0, a1
ret

(Utah Tech University) CS 2810 Spring 2025 5 / 27

Functions Parameter Passing

Parameter Passing

How do functions pass arguments?

1. On the stack
2. In registers
3. In registers and on the stack

Calling conventions are the rules functions follow to interoperate with each other. A function call requires coordination
between the caller (the code initiating the function call) and the callee (the code being called).

Each function allocates a chunk of stack space called a stack frame where it can store private data.
Compilers/programmers have quite a bit of freedom in how they manage the stack frame, but it also has some structure
that everyone must honor.

(Utah Tech University) CS 2810 Spring 2025 6 / 27

Functions Parameter Passing

Parameters

Arguments go in the registers a0–a7 in order

The return value is put in a0

Note: nothing magic happens when a jal instruction is issued: it is up to the caller to put the arguments in the right place
and then the callee trusts that they are there. Same for return value.

Complications:

What if there are more than 8 arguments?
The remaining arguments go on the stack

What if an argument does not fit in a register (a struct)
The too-big argument goes on the stack

(Utah Tech University) CS 2810 Spring 2025 7 / 27

Functions Parameter Passing

Registers

pc: The program counter always contains the address of the instruction currently running. This is not one of the 32
registers you can use in normal instructions—only special instructions (branches, jumps, etc.) access it and only in
special ways.

zero: The zero register is a special case. Its value is always zero when read, and values written to it are discarded.

ra: This return address register is where return addresses are stored by default by the jal instruction and we normally do
not use it for anything else.

sp: The stack pointer register is normally reserved for holding the address of the current bottom of the stack.

a0–a7: The argument registers are used for passing parameters to functions, and then functions may use them freely as
scratch registers. If the caller cares about their contents, the caller must save them before making a function call.

t0–t6: The temporary registers are additional scratch registers that functions can use freely. If the caller cares about their
contents when making a function call, it must save them before making the call.

s0–s11: Saved registers—if the callee uses them, then the callee must restore the original values before returning.
Standard practice is to store the old values on the stack frame at the beginning of the function, use them, then load the
values back from the stack frame to restore them before returning.

(Utah Tech University) CS 2810 Spring 2025 8 / 27

Functions Stack frames

Stack frames

Each instance of a function allocates a stack frame, which is just a chunk of stack space owned by that instance. Stack
frames typically hold:

The return address (from the link register)

Parameters that do not fit in the registers

Local variables

Copies of callee-saved registers

Imagine a recursive function that calls itself many times. Each stack frame is tied to a single call, so there can be many
instances of the function outstanding but their local storage will not overlap or be confused.

(Utah Tech University) CS 2810 Spring 2025 9 / 27

Functions Stack frames

Example stack frame

Consider a typical stack frame and the code that sets it up:
myfunc:

function prelude:
addi sp, sp, -32
sd ra, 24(sp)
sd s2, 16(sp)
sd s1, 8(sp)
sd s0, 0(sp)

main function code goes here
can use s0, s1, and s2
and can make function calls

function postlude:
ld ra, 24(sp)
ld s2, 16(sp)
ld s1, 8(sp)
ld s0, 0(sp)
addi sp, sp, 32
ret

| |
| caller's stack frame |
| |
+----------------------+
| saved return address | 24
+----------------------+
| saved s2 | 16
+----------------------+
| saved s1 | 8
+----------------------+

sp-->| saved s0 | 0
+----------------------+
| |
| unused stack space |
| |

(Utah Tech University) CS 2810 Spring 2025 10 / 27

An Approach to Writing Assembly Language Writing assembly-language functions

The Goal

Our goal in learning assembly language is to better understand what actually happens when we write code in a high-level
language. To that end we will start with a function in C or C-like pseudo-code and transform it into simplified code with these
qualities:

No indented block structure (only labels and goto statements). This means all loops and complicated if-else sequences
must be transformed into simpler equivalents

The only if-statements are comparisons of two numbers where the action is a goto statement

Expressions are all simplified so that each line can be translated directly into one or two lines of assembly

Before you write a single line of actual assembly language, you should know the following:

Every variable (including the intermediate results normally hidden in complex expressions) and everywhere it is used.
This includes knowing if it is a value that needs to be in a saved register or if a temporary register will suffice

How many registers are needed and which ones they are. This includes knowing how many saved registers need to be
written to the stack in the function prelude and restored in the postlude.

(Utah Tech University) CS 2810 Spring 2025 11 / 27

An Approach to Writing Assembly Language Writing assembly-language functions

The Process

Start with a function in C or C-like pseudo-code

Transform complex control flow into simple if-statements with goto statements, removing all indented block structure

Transform other complex statements and expressions into simpler versions where every intermediate value has an explicit
name

Plan which variables will occupy which registers

Convert the function line-by-line into real assembly language

(Utah Tech University) CS 2810 Spring 2025 12 / 27

Control Flow Control Flow

Control flow

High-level languages have various ways to control what happens next:

Conditionals: if, else if, else, etc.

Loops: while, do while, for, for range, etc.

Switch: switch and case

In assembly language our basic tools is:

Compare two numbers (two registers or a register and an immediate constant)

Based on the result (equal, not equal, less than, less than or equal, greater than, greater than or equal), either branch (jump) or keep
going

We will transform high-level constructs into:

Labels that identify a spot in the code

if that compares two values followed by goto

No complex comparisons, no else, nothing else inside the if block

(Utah Tech University) CS 2810 Spring 2025 13 / 27

Control Flow Conditionals

Simple if statements

The problem: the if block has anything other than a
goto inside it

if a > b:
print("a is bigger")

print("back together")

The solution: invert the test
Change “if condition do xyz” to “if !condition skip xyz”

if a <= b:
goto 1f

print("a is bigger")
1: print("back together")

(Utah Tech University) CS 2810 Spring 2025 14 / 27

Control Flow Conditionals

If with else

The problem: the if is followed by an else

if a > b:
print("a is bigger")

else:
print("a is not bigger")

print("back together")

The solution: add a goto to skip over the else part

if a <= b:
goto 1f

print("a is bigger")
goto 2f

1: print("a is not bigger")
2: print("back together")

Note: labels are not instructions and do not impact the
control flow. It will fall through from the code at label 1
to the code at label 2

(Utah Tech University) CS 2810 Spring 2025 15 / 27

Control Flow Conditionals

Chains of else if

The problem: else if chains
Pattern works for any number

if a > b:
print("a is bigger")

elif a == b:
print("a and b equal")

else:
print("a is smaller")

print("back together")

The solution: invert each test, skip to join point after
each block

if a <= b:
goto 1f

print("a is bigger")
goto 3f

1: if a != b:
goto 2f

print("a and b equal")
goto 3f

2: print("a is smaller")
3: print("back together")

(Utah Tech University) CS 2810 Spring 2025 16 / 27

Control Flow Loops

do while

Not the most common type of loop, but the easiest to
work with

do {
printf("inside the loop\n");
a++;

} while (a < b);
printf("finished\n");

The test condition does not need to be inverted

1: printf("inside the loop\n");
a++;
if (a < b)

goto 1b;
printf("finished\n");

(Utah Tech University) CS 2810 Spring 2025 17 / 27

Control Flow Loops

while

do while always runs at least once, but while can run
zero or more times

while a < b:
print("inside the loop")
a += 1

print("finished")

Like an if but with a branch at the bottom to start over

1: if a >= b:
goto 2f

print("inside the loop")
a += 1
goto 1b

2: print("finished")

(Utah Tech University) CS 2810 Spring 2025 18 / 27

Control Flow Loops

C-style for loop

C-style for loops transform into while loops

for (int i = 0; i < size; i++) {
printf("element %d is %d\n", i, array[i]);

}
printf("finished\n");

Carefully note where the update (i++) part fits in

int i = 0;
1: if (i >= size)

goto 2f;
printf("element %d is %d\n", i, array[i]);
i++;
goto 1b;

2: printf("finished\n");

(Utah Tech University) CS 2810 Spring 2025 19 / 27

Control Flow Loops

break

break terminates a loop immediately

for (int i = 0; i < size; i++) {
if (array[i] < 0)

break;
printf("element %d is %d\n", i, array[i]);

}
printf("finished\n");

break is a form of goto so it can go inside an if

int i = 0;
1: if (i >= size)

goto 2f;
int temp = array[i];
if (temp < 0)

goto 2f
printf("element %d is %d\n", i, array[i]);
i++;
goto 1b;

2: printf("finished\n");

(Utah Tech University) CS 2810 Spring 2025 20 / 27

Control Flow Loops

continue

continue skips to the next iteration of the loop

for (int i = 0; i < size; i++) {
if (array[i] < 0)

continue;
printf("element %d is %d\n", i, array[i]);

}
printf("finished\n");

continue still performs the update and the test

int i = 0;
1: if (i >= size)

goto 3f;
int temp = array[i];
if (temp < 0)

goto 2f
printf("element %d is %d\n", i, array[i]);

2: i++;
goto 1b;

3: printf("finished\n");

(Utah Tech University) CS 2810 Spring 2025 21 / 27

Control Flow Loops

Python for loops

What about Python for loops?

for i in range(10):
print(i)

print("finished")

Typical for with range is similar to C

i = 0
1: if i >= 10:

goto 2f
print(i)
i += 1
goto 1b

2: print("finished")

break and continue work the same way as in C

(Utah Tech University) CS 2810 Spring 2025 22 / 27

Control Flow Loops

Python for loops

What about iterating over a collection?

for elt in lst:
print(elt)

print("finished")

Like the version using range, but you must find the
length of the list and look up the element each iteration

i = 0
size = len(lst)

1: if i >= size:
goto 2f

elt = lst[i]
print(elt)
i += 1
goto 1b

2: print("finished")

(Utah Tech University) CS 2810 Spring 2025 23 / 27

Memory Memory Access

64-bit integers

RISC-V is a load/store architecture, meaning that the interface with memory is simple and limited:

You can load a value from memory into a register

ld dest, immediate offset(register with memory address)
ld t0, 8(a1)

You can store a value from a register into memory

sd src, immediate offset(register with memory address)
sd t1, 16(t2)

If you need a more complex address calculation, you must compute it first and then issue the load or store instruction.

(Utah Tech University) CS 2810 Spring 2025 24 / 27

Memory Memory Access

Examples

Load a global variable into t3 given a pointer in a2

ld t3, (a2)

Load a global variable with label size

la t0, size
ld t3, (t0)

Load a value from an array into t1. The array pointer is in a4 and the index is in a7. We use t2 as a temporary register to
compute the effective address:

slli t2, a7, 3
add t2, a0, t2
ld t1, (t2)

a0 specifies the base address
a7 is an index, but each element is 8 bytes in size
slli shifts a7 left 3 times, effectively multiplying a7 by 8 and storing the result in t2
The scaled index and array base are added together to compute the effective address of the array element

slli is a convenient way to scale index values by a power of 2

(Utah Tech University) CS 2810 Spring 2025 25 / 27

Memory Memory Access

32-bit and 16-bit integers

You can also load and store 32-bit and 16-bit values:

The registers are the same, but you can load a smaller value and either sign extend it to 64 bits (using lw or lh) or fill in
the remaining bits with zeros (using lwu or lhu):

slli t2, a7, 2 # 16 bit: slli t2, a7, 1
add t2, a0, t2 # 16 bit: same
lw t1, (t2) # 16 bit: lh t1, (t2)

The address is still 64 bits
A 32/16-bit value is loaded into the lower bits of t1 and the remaining bits are copies of the sign bit
Since each element in the array is only 4/2 bytes in size, we shift left twice/once (multiply by 4/2)

(Utah Tech University) CS 2810 Spring 2025 26 / 27

Memory Memory Access

Strings

C strings are stored as an array of 1-byte characters with a zero byte marking the end

To load a single byte

lb t3, (a5)

Addresses are still 64 bits
The remaining 56 bits of the target register are filled in using sign extension (lb) or with zeros (lbu)

The same process is used for array lookups

add t2, a0, a7
lb t1, (t2)

Since each element is 1 byte, there is usually no need to shift

(Utah Tech University) CS 2810 Spring 2025 27 / 27

	Functions
	Calling Functions
	Parameter Passing
	Stack frames

	An Approach to Writing Assembly Language
	Writing assembly-language functions

	Control Flow
	Control Flow
	Conditionals
	Loops

	Memory
	Memory Access

