
CS	3005:	Programming	in	C++
Audio	Track	Class
Introduction
A	digital	audio	track	is	a	sequence	of	values	that	describe	the	intensity	of	sound	at	different	times.	For	example,	this	image	show	the	first	second	of
Eddie	Van	Halen’s	classic	guitar	solo	“Eruption”.

Audio	engineers	collect	and	combine	audio	tracks	to	make	music	files,	such	as	those	released	by	artists	for	your	listening	pleasure.

To	create	higher	quality	audio,	the	tracks	need	to	record	more	samples	per	second.	The	more	samples	per	second,	the	more	data,	and	storage,	is
needed.	So,	trade	offs	are	made	between	quality	and	storage.

Assignment
In	this	assignment,	you	will	create	a	class	called	 AudioTrack 	that	describes	an	audio	track.	It	will	have	the	ability	to	store	and	retrieve	audio	track
information.	An	audio	track	object	will	be	configurable	with	the	number	of	samples	per	second	(quality)	and	the	number	of	seconds	(duration).

The	total	number	of	samples	in	an	audio	track	is	determined	by	the	number	of	samples	per	second	multiplied	by	the	number	of	seconds.	Anytime	an
audio	track	object’s	samples	per	second	or	number	of	seconds	is	changed,	the	size	of	the	audio	track	will	change.	Your	class	will	control	this	by
automatically	resizing	a	 vector 	to	meet	the	requirements.

In	this	assignment,	you	will	be	creating	the	first	portion	of	the	 library-audiofiles 	library.	In	future	assignments,	another	class	will	be	added	to	allow
you	to	write	audio	files	that	can	be	played	back.	There	is	no	program	for	this	assignment.

Programming	Requirements
Create	 library-audiofiles/AudioTrack.{h,cpp}
AudioTrack 	Class

Data	Members:

The	 AudioTrack 	class	should	contain	data	members	to	track	the	following	information.	These	data	members	should	be	 protected 	or	 private .	They	are
not	allowed	to	be	 public .

int 	samples	per	second;	The	sampling	rate	of	the	audio	data	in	the	track.
double 	seconds;	The	duration	of	the	audio	data	in	seconds.
std::vector<double> 	values;	The	audio	data	in	the	form	of	a	sequence	of	samples.	The	samples	should	be	initialized	to	0.	The	length	of	the	vector
should	be	sufficient	to	contain	the	number	of	samples	specified	by	the	 samples	per	second 	and	 seconds 	data	members.

public 	Methods:

AudioTrack(); 	Initializes	data	members	to	zero	values.
int	getSamplesPerSecond()	const; 	Returns	the	value	of	the	data	member.
double	getSeconds()	const; 	Returns	the	value	of	the	data	member.
unsigned	int	getSize()	const; 	Returns	the	size	of	the	 values 	vector.
void	setSamplesPerSecond(const	int	samples_per_second); 	Assigns	the	value	of	the	data	member.	Resizes	the	 values 	vector	to	reflect	the	new	size
of	the	audio	data.	If	the	new	value	is	less	than	1,	then	the	method	should	do	nothing.
void	setSeconds(const	double	seconds); 	Assigns	the	value	of	the	data	member.	Resizes	the	 values 	vector	to	reflect	the	new	size	of	the	audio	data.
If	the	new	value	is	0	or	less,	then	the	method	should	do	nothing.
void	setSize(const	int	samples_per_second,	const	double	seconds); 	Assigns	the	values	of	the	data	members.	Resizes	the	 values 	vector	to	reflect
the	new	size	of	the	audio	data.	If	either	of	the	new	values	is	less	than	or	equal	to	0,	then	the	method	should	do	nothing.
bool	indexValid(const	unsigned	int	index)	const; 	Returns	whether	the	parameter	is	a	valid	index	to	the	 values 	vector.
double	getValue(const	unsigned	int	index)	const; 	Returns	the	sample	at	the	given	index	of	the	 values 	vector.	If	the	index	is	invalid,	then	the
method	should	return	 -INFINITY .
void	setValue(const	unsigned	int	index,	const	double	value); 	Assigns	the	sample	at	the	given	index	of	the	 values 	vector	to	the	given	value.	If	the
index	is	invalid,	then	the	method	should	do	nothing.

protected 	Methods:

void	resizeValues(); 	Resizes	the	 values 	data	member	to	the	appropriate	size,	determined	by	the	 samples	per	second 	and	 seconds 	data	members.
The	 values 	vector	should	be	zeroed	out	as	well.

Create	 library-audiofiles/Makefile
This	file	must	contain	rules	such	that	any	of	the	following	commands	will	build	the	 libaudiofiles.a 	library:

make
make	all

This	file	must	contain	rules	such	that	the	following	command	will	install	the	 libaudiofiles.a 	library	into	the	 lib 	directory:

make	install

Update	 Makefile
Update	the	project-level	 Makefile 	so	that	 make 	and	 make	all 	in	the	project	directory	will	call	 make	install 	in	the	 library-audiofiles 	directory.



Additional	Documentation
classes
public/protected/private
std::vector
std::vector::resize
cmath	(for	INFINITY)

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
Add	a	makefile	target	to	push	your	code	to	your	repository

Non-file	(Phony)	Targets
Add	git	pre-commit	hooks	to	automatically	format	code	before	committing

Git	hooks
Clang	Formatter

https://en.cppreference.com/w/cpp/language/classes
https://en.cppreference.com/w/cpp/language/access
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/vector/resize
https://cplusplus.com/reference/cmath/
https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://clang.llvm.org/extra/clang-tidy/

