
CS	3005:	Programming	in	C++
WAV	File	Output
Introduction
A	WAV	file	is	a	file	format	that	can	be	used	to	store	sound	data.	It	is	actually	a	specific	use	of	the	RIFF	file
format.	The	WAV	file	consists	of	single	RIFF	chuck,	that	contains	the	“RIFF”	header,	a	“fmt	”	sub-chunk	and
a	“data”	sub-chunk.	The	“RIFF”	header	describes	the	file	format,	and	the	“fmt	”	sub-chunk	contains
information	about	the	audio	format,	such	as	the	number	of	channels,	and	the	“data”	sub-chunk	contains	the
actual	audio	data.

RIFF	Header
The	“RIFF”	header	has	three	pieces	of	information.

The	ID,	consisting	of	the	4	characters	“RIFF”
The	Size,	a	32-bit	integer,	which	is	the	number	of	bytes	in	the	file	after	the	size.	Or,	in	other	words,	the
number	of	bytes	in	the	file	minus	8.
The	Format,	consisting	of	the	4	characters	“WAVE”.

Assignment
In	this	assignment,	you	will	start	to	create	a	class,	 WAVFile 	that	supports	the	writing	of	WAV	files.

Programming	Requirements
Depends	on	the	 AudioTrack 	class.

Create	 library-audiofiles/endian_io.{h,cpp}
Declare	the	following	functions	in	the	header	file,	and	implement	them	in	the	cpp	file.	Some	of	the	functions
belong	to	the	 little_endian_io 	namespace,	and	others	to	the	 big_endian_io 	namespace.	Be	sure	to	declare
them	correctly.

little_endian_io 	Functions:
std::ostream&	write_word(std::ostream&	output_stream,	int	value,	unsigned	size); 	Writes	 size 	bytes	of
value 	to	 output_stream .	Starts	with	the	least	significant	byte.
std::ostream&	write_4_bytes(std::ostream&	output_stream,	int	value); 	Uses	 write_word 	to	write	4	bytes.
std::ostream&	write_2_bytes(std::ostream&	output_stream,	int	value); 	Uses	 write_word 	to	write	2	bytes.
std::ostream&	write_1_bytes(std::ostream&	output_stream,	int	value); 	Uses	 write_word 	to	write	1	bytes.

big_endian_io 	Functions:
std::ostream&	write_string(std::ostream&	output_stream,	const	std::string&	value); 	Writes	the	string
value 	to	 output_stream 	in	order	from	first	to	last	byte	of	the	string.

Create	 library-audiofiles/WAVFile.{h,cpp}
WAVFile 	Class

Data	Members:

The	 WAVFile 	class	should	contain	data	members	to	track	the	following	information.	These	data	members
should	be	 protected 	or	 private .	They	are	not	allowed	to	be	 public .

int 	samples	per	second;	The	sampling	rate	of	the	data	for	the	wave	file.
int 	bits	per	sample;	The	number	of	bits	per	sample	in	the	wave	file.	Constrained	to	a	multiple	of	8
(specifically	8,	16,	24,	or	32).

public 	Methods:



WAVFile(int	samples_per_second,	int	bits_per_sample); 	Initializes	data	members	from	the	parameters	to
0	in	the	initialization	part	of	the	constructor.	Uses	the	setter	methods	to	attempt	to	set	the	data
members	from	parameters.	Note,	this	means,	if	 samples_per_second 	is	less	than	1	then	the	data	member
will	still	be	set	to	0,	or	if	 bits_per_sample 	is	not	a	multiple	of	8,	then	the	data	member	will	be	set	to	0.
int	getSamplesPerSecond()	const; 	Returns	the	value	of	the	data	member.
int	getBitsPerSample()	const; 	Returns	the	value	of	the	data	member.
void	setSamplesPerSecond(const	int	samples_per_second); 	Assigns	the	value	of	the	data	member.	If	the
new	value	is	less	than	1,	then	the	method	should	do	nothing.
void	setBitsPerSample(const	int	bits_per_sample); 	Assigns	the	value	of	the	data	member.	If	the	new
value	is	not	a	multiple	of	8	(8,	16,	24,	or	32),	then	the	method	should	do	nothing.

Update	 library-audiofiles/Makefile
Add	the	 WAVFile 	and	 endian 	files	to	the	 Makefile 	so	the	headers	are	installed	and	the	 .o 	file	are	added
to	the	library.

Additional	Documentation
WAVE	PCM	soundfile	format
std::ostream
std::ofstream
namespace
types
Member	initializer	list
if
comparison	operators
logical	operators
std::stringstream
arithmetic	operators
std::vector
std::string
#include
const	method
references
public/protected/private
size_t
classes
class	declaration
class	implementation	file
static_cast
auto
for	(counted)
for	(range)
address-of

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
Describe	possible	additions	and	extensions	that	could	be	added	without	breaking	the	expected	functionality.
Careful	not	to	give	away	too	many	possible	exam	tasks.

http://soundfile.sapp.org/doc/WaveFormat/
https://en.cppreference.com/w/cpp/io/basic_ostream
https://en.cppreference.com/w/cpp/io/basic_ofstream
https://en.cppreference.com/w/cpp/language/namespace
https://en.cppreference.com/w/cpp/language/types
https://en.cppreference.com/w/cpp/language/constructor
https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/operator_comparison
https://en.cppreference.com/w/cpp/language/operator_logical
https://en.cppreference.com/w/cpp/io/basic_stringstream
https://en.cppreference.com/w/cpp/language/operator_arithmetic
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/string/basic_string
https://en.cppreference.com/w/cpp/preprocessor/include
https://en.cppreference.com/w/cpp/language/member_functions#Member_functions_with_cv-qualifiers
https://en.cppreference.com/w/cpp/language/reference
https://en.cppreference.com/w/cpp/language/access
https://en.cppreference.com/w/cpp/types/size_t
https://en.cppreference.com/w/cpp/language/classes
https://en.cppreference.com/w/cpp/language/class
https://en.wikipedia.org/wiki/Class_implementation_file
https://en.cppreference.com/w/cpp/language/static_cast
https://en.cppreference.com/w/cpp/language/auto
https://en.cppreference.com/w/cpp/language/for
https://en.cppreference.com/w/cpp/language/range-for
https://en.cppreference.com/w/cpp/language/operator_member_access

