
CS	3005:	Programming	in	C++
WAV	File	Output
This	is	a	continuation	of	the	previous	assignment.	Please	read	the	instructions	there	and	complete	the
required	programming	tasks	before	starting	this	assignment.

Introduction
A	WAV	file	is	a	file	format	that	can	be	used	to	store	sound	data.	It	is	actually	a	specific	use	of	the	RIFF	file
format.	The	WAV	file	consists	of	single	RIFF	chuck,	that	contains	the	“RIFF”	header,	a	“fmt	”	sub-chunk	and
a	“data”	sub-chunk.	The	“RIFF”	header	describes	the	file	format,	and	the	“fmt	”	sub-chunk	contains
information	about	the	audio	format,	such	as	the	number	of	channels,	and	the	“data”	sub-chunk	contains	the
actual	audio	data.

RIFF	Header
The	“RIFF”	header	has	three	pieces	of	information.

The	ID,	consisting	of	the	4	characters	“RIFF”
The	Size,	a	32-bit	integer,	which	is	the	number	of	bytes	in	the	file	after	the	size.	Or,	in	other	words,	the
number	of	bytes	in	the	file	minus	8.
The	Format,	consisting	of	the	4	characters	“WAVE”.

“fmt	”	Sub-chunk
The	“fmt	”	sub-chunk	contains	information	about	the	audio	format,	such	as	the	number	of	channels,	and	the
sample	rate.	Each	of	the	properties	has	a	specific	size	and	order.	Below	we	describe	each	of	them.

Property Type Size Description
SubchunkID char 4 “fmt	“
SubchunkSize int 4 the	number	of	bytes	in	this	subchunk	that	follow	this	field.	In	other	words,	16.
AudioFormat int 2 For	PCM	formats,	the	value	should	be	1.
NumChannels int 2 The	number	of	channels,	1	for	mono,	2	for	stereo.
SampleRate int 4 The	number	of	samples	per	second.	(44100	for	“CD	Quality”)
ByteRate int 4 The	number	of	bytes	per	second.	SampleRate	*	NumChannels	*	BitsPerSample/8.

BlockAlign int 2 The	number	of	bytes	per	sample,	including	all	channels.	NumChannels	*
BitsPerSample/8.

BitsPerSample int 2 The	number	of	bits	per	sample,	per	channel.

We	want	ByteRate	and	BlockAlign	to	be	an	integers,	so	we	will	only	allow	BitsPerSample	to	be	multiples	of	8.

“data”	Sub-chunk
This	block	contains	the	actual	sound	data.	There	is	a	small	header	at	the	beginning	of	the	sub-chunk.

Property Type Size Description
SubchunkID char 4 “data”

SubchunkSize int 4 the	number	of	bytes	in	the	file	that	follow	this	field.	In	other	words,	the	number	of
bytes	in	the	file	minus	44.

This	header	is	followed	by	the	actual	sound	data.	The	first	sample	is	written	for	all	channels.	Followed	by	the
second	sample	for	all	channels,	etc.

The	maximum	integer	value	depends	on	the	bits	per	sample.	If	there	are	8	bits,	then	the	maximum	integer
value	is	127.	This	is	the	value	achieved	by	setting	all	but	the	most	significant	bit	in	the	integer	to	1.
Likewise,	if	there	are	16	bits,	then	the	maximum	integer	value	is	32767.	For	24	and	32	bits	per	sample	the
maximum	values	are	8388607	and	2147483647.

Assignment
In	this	assignment,	you	will	finish	creating	a	class,	 WAVFile 	that	supports	the	writing	of	WAV	files.



Programming	Requirements
Depends	on	the	 AudioTrack 	class.	Depends	on	the	 endian_io 	module.	Depends	on	the	 WAVFile 	class	started	in
the	previous	assignment.

Update	 library-audiofiles/WAVFile.{h,cpp}
WAVFile 	Class

Data	Members:

The	 WAVFile 	class	should	contain	data	members	to	track	the	following	information.	These	data	members
should	be	 protected 	or	 private .	They	are	not	allowed	to	be	 public .

unsigned	int 	data	subchunk	position;	The	position	in	the	file	of	the	data	subchunk.	Computed	while
writing	a	file,	and	used	to	write	the	subchunk	size	in	the	correct	location,	after	it	has	been	determined.

public 	Methods:

void	writeFile(const	std::string&	filename,	const	std::vector<AudioTrack>&	tracks); 	Opens	an	output
file	stream	using	the	 open 	method,	passes	the	output	file	stream	to	 writeFile ,	and	uses	the	 close
method	to	close	the	output	file	stream.
void	writeFile(std::ostream&	output_stream,	const	std::vector<AudioTrack>&	tracks); 	Sets	the	data
subchunk	position	to	0	and	writes	the	RIFF	header,	the	FMT	subchunk,	then	writes	the	data	subchunk
header.	It	then	writes	the	track	data,	and	updates	the	sizes	in	the	headers.	Use	the	other	methods	of	the
class	to	do	this	work.

protected 	Methods:

void	open(const	std::string&	filename,	std::ofstream&	output_stream); 	Open	the	file	named	 filename
with	the	 output_stream ,	in	binary	mode.
void	writeRIFFHeader(std::ostream&	output_stream); 	Write	the	RIFF	header.	Put	0	as	filler	data	in	the
chunk	size	field.
void	writeFMTSubchunk(std::ostream&	output_stream); 	Write	the	“fmt	”	subchunk.
void	writeDataSubchunkHeader(std::ostream&	output_stream); 	Write	the	header	to	the	data	subchunk.	Put
0	as	filler	data	in	the	chunk	size	field.	Use	 tellp 	to	record	the	position	at	the	start	of	the	subchunk	in
the	 data	subchunk	position 	member.
void	writeOneTrackData(std::ostream&	output_stream,	const	double	track_data,	int	maximum_amplitude,	int
bytes_per_sample); 	Computes	the	integer	value	to	write	to	the	stream	from	 track_data 	and
maximum_amplitude .	Writes	the	value	in	little	endian	order	to	 output_stream .
void	writeTracks(std::ostream&	output_stream,	const	std::vector<AudioTrack>&	tracks); 	Write	the	track
data	in	little	endian	order.	If	there	are	not	exactly	2	tracks,	or	if	the	two	tracks	are	not	the	same	size,
do	nothing.	Note	that	the	bytes	per	sample	is	the	bits	per	sample	divided	by	8.	Also,	the	maximum
amplitude	depends	on	the	bits	per	sample.
void	writeSizes(std::ostream&	output_stream); 	Now	that	the	sizes	of	chunks	and	file	are	known,	go	back
to	the	headers	and	write	the	correct	values	in	the	size	fields.	Assumes	that	the	output_stream	is	now
positioned	at	the	end	of	the	file.	This	will	allow	us	to	compute	the	total	file	size.	Use	 tellp() 	to	find	the
current	stream	position.	Use	 seekp() 	to	move	to	the	location	where	the	size	should	be	written.
void	close(std::ofstream&	output_stream); 	Close	 output_stream ,	if	it	is	open.

Additional	Documentation
WAVE	PCM	soundfile	format
std::ostream
std::ofstream
namespace
types
Member	initializer	list
if
comparison	operators
logical	operators
std::stringstream
arithmetic	operators

http://soundfile.sapp.org/doc/WaveFormat/
https://en.cppreference.com/w/cpp/io/basic_ostream
https://en.cppreference.com/w/cpp/io/basic_ofstream
https://en.cppreference.com/w/cpp/language/namespace
https://en.cppreference.com/w/cpp/language/types
https://en.cppreference.com/w/cpp/language/constructor
https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/operator_comparison
https://en.cppreference.com/w/cpp/language/operator_logical
https://en.cppreference.com/w/cpp/io/basic_stringstream
https://en.cppreference.com/w/cpp/language/operator_arithmetic


std::vector
std::string
#include
const	method
references
public/protected/private
size_t
classes
class	declaration
class	implementation	file
static_cast
auto
for	(counted)
for	(range)
address-of

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
Describe	possible	additions	and	extensions	that	could	be	added	without	breaking	the	expected	functionality.
Careful	not	to	give	away	too	many	possible	exam	tasks.

https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/string/basic_string
https://en.cppreference.com/w/cpp/preprocessor/include
https://en.cppreference.com/w/cpp/language/member_functions#Member_functions_with_cv-qualifiers
https://en.cppreference.com/w/cpp/language/reference
https://en.cppreference.com/w/cpp/language/access
https://en.cppreference.com/w/cpp/types/size_t
https://en.cppreference.com/w/cpp/language/classes
https://en.cppreference.com/w/cpp/language/class
https://en.wikipedia.org/wiki/Class_implementation_file
https://en.cppreference.com/w/cpp/language/static_cast
https://en.cppreference.com/w/cpp/language/auto
https://en.cppreference.com/w/cpp/language/for
https://en.cppreference.com/w/cpp/language/range-for
https://en.cppreference.com/w/cpp/language/operator_member_access

