
CS	3005:	Programming	in	C++
Waveform	Classes
Introduction
Sound	is	sent	through	the	air	as	compressions	and	expansions	of	the	density	of	the	air	molecules.	A	single
pitch	sound	comes	from	a	cyclic	compression/decompression	at	a	specific	frequency.	For	example,	Middle	C
on	a	piano	keyboard	produces	sound	at	approximately	261.6258	Hz	(Hz	=	cycles	per	second).

When	working	with	digital	representations	of	sound,	we	record	the	increase	or	decrease	in	the	air	density,
as	the	signal.	For	example,	the	following	image	shows	a	cycle	of	a	sine	wave.	We	allow	the	amplitude	to
range	between	1.0	and	-1.0,	indicating	the	most	compression	and	the	most	decompression.

Notice	that	the	amplitude	increases	and	decreases	smoothly.	You	can	hear	the	smooth	sound	produced	by
this	waveform	in	the	audio	track.	If	we	reduce	the	amplitude	of	the	signal,	the	sound	becomes	more	quiet.
Increasing	the	frequency	of	the	sine	wave	will	produce	a	higher	pitched	sound,	and	decreasing	the	frequency
will	produce	a	lower	pitched	sound.

We	can	also	change	the	shape	of	the	signal	to	produce	a	different	sound.	This	is	a	square	wave.	It	abruptly
changes	between	the	maximum	and	minimum	amplitude,	and	has	a	harsher	sound.

Audio	designers	will	try	many	different	shapes	to	create	different	sounds.	The	amplitude	is	used	to	control

https://www.cs.utahtech.edu/cs/3005/assignments.wav_wizard/assignment_13_waveform/sine-args-waveform.wav
https://www.cs.utahtech.edu/cs/3005/assignments.wav_wizard/assignment_13_waveform/sine-args-waveform-softer.wav
https://www.cs.utahtech.edu/cs/3005/assignments.wav_wizard/assignment_13_waveform/sine-args-waveform-higher.wav
https://www.cs.utahtech.edu/cs/3005/assignments.wav_wizard/assignment_13_waveform/sine-args-waveform-lower.wav
https://www.cs.utahtech.edu/cs/3005/assignments.wav_wizard/assignment_13_waveform/square-args-waveform.wav

the	volume	of	the	sound,	and	the	frequency	is	used	to	control	the	pitch	of	the	sound.

Assignment
In	this	assignment,	you	will	create	a	class	hierarchy	to	represent	the	functionality	of	a	waveform,	including
specialization	for	the	sine	and	square	waves.

The	 Waveform 	class	will	be	a	base	class.	 SineWaveform 	and	 SquareWaveform 	will	inherit	from	it.	The	base	class
will	be	responsible	for	storing	the	amplitude	of	the	wave.	It	will	also	provide	the	functionality	to	compute	the
wave’s	position	in	a	cycle,	given	the	time	since	the	beginning	of	the	wave.	It	will	also	provide	the
functionality	of	generating	all	samples	for	a	waveform	over	a	given	period	of	time,	storing	the	samples	in	an
AudioTrack 	object.	The	derived	classes	will	provide	the	functionality	capable	of	producing	the	specific	shape
of	the	waveform.

You	will	also	create	a	simple	program	that	writes	a	WAV	file	after	the	user	selects	the	waveform,	amplitude
and	frequency,	and	the	duration	of	the	audio	track.

A	sample	interaction	with	the	program	may	look	like	this:

$./program-waveform-test/waveform_test	
Samples/Second:	44100
Seconds:	2.5
Bits/Sample[8,16,24,32]:	16
Left	Channel
Waveform	style:	sine
Amplitude:	1.0
Frequency:	265
Right	Channel
Waveform	style:	square
Amplitude:	0.5
Frequency:	300
WAV	filename:	foo.wav	
$	ls	-l	foo.wav	
-rw-rw-r--	1	cgl	cgl	441044	Oct	10	14:41	foo.wav

This	example	demonstrates	a	user	giving	an	invalid	waveform	style.

$./program-waveform-test/waveform_test	
Samples/Second:	8000
Seconds:	1.2
Bits/Sample[8,16,24,32]:	24
Left	Channel
Waveform	style:	sawtooth
Amplitude:	1.0
Frequency:	400
Waveform	style	'sawtooth'	is	not	known.
Right	Channel
Waveform	style:	sine
Amplitude:	1.0
Frequency:	300
WAV	filename:	bar.wav
$	ls	-l	bar.wav	
-rw-rw-r--	1	cgl	cgl	57644	Oct	10	14:45	bar.wav

Computing	Position	in	Waveform	(Angle	from	Sample	Number)
The	units	for	frequency	are	Hertz	(Hz)	which	is	the	same	as	(1/Seconds).	The	units	for	 samples_per_second
are	Samples/Seconds.	The	units	for	 sample_number 	are	Samples.	The	units	of	 two_pi 	are	Radians.	The	value
of	 two_pi 	is	approximately	 6.283185307179586476925286766559 .

To	compute	the	angle	from	the	sample	number	we	need	to	use	this	formula:

angle	=	two_pi	*	sample_number	*	frequency	/	samples_per_second

Note	the	units	are:

Radians	=	Radians	*	Samples	*	(1/Seconds)	/	(Samples/Seconds)
Radians	=	Radians	*	Samples	*	(1/Seconds)	*	(Seconds/Samples)
Radians	=	Radians	*	(Samples/Samples)	*	(Seconds/Seconds)
Radians	=	Radians

This	checks	out.

Computing	Cycle	Position
The	cycle	position	is	the	fractional	part	of	a	cycle	within	the	full	position.	We	want	to	make	this	be	a	number
in	the	range	 [0,	1) .

This	is	calculated	by	getting	the	angle	of	the	full	position,	then	repeatedly	subtracting	of	the	angle	of	a	full
cycle,	until	the	remaining	angle	is	less	than	a	full	cycle.	The	angle	of	a	full	cycle	is	 two_pi .	Note	that	this
repeated	subtraction	is	the	same	as	taking	the	modulus	of	the	angle	by	 two_pi .

The	problem	is	that	the	modulus	operator	(%)	only	works	on	integers.	We	are	working	with	floating	point
numbers.	We	need	to	use	 std::fmod() 	(look	in	the	documentation	to	find	the	correct	header	file)	to	compute
the	remaining	angle.

After	getting	the	remaining	angle,	we	get	the	position	in	the	cycle	by	dividing	by	 two_pi .

Programming	Requirements
Create	 library-waveform/Waveform.{h,cpp}
Waveform 	Class

Data	Members:

The	 Waveform 	class	should	contain	data	members	to	track	the	following	information.	These	data	members
should	be	 protected 	or	 private .	They	are	not	allowed	to	be	 public .

std::string 	name	for	waveform;	Used	to	identify	a	waveform	in	collections	of	many	waveforms.
std::string 	type	name	for	waveform;	Used	to	identify	the	specialized	form	of	the	waveform.
double 	amplitude;	The	amplitude	of	the	waveform	in	the	range	of	0	to	1.

public 	Methods:

Waveform(const	std::string&	name,	const	std::string&	type_name); 	Initializes	the	two	string	data
members	using	the	parameters,	and	sets	the	amplitude	to	1.
virtual	~Waveform(); 	Empty	function	body.	This	method	is	required	because	we	have	a	virtual	method.
const	std::string&	getName()	const; 	Returns	the	data	member.
const	std::string&	getTypeName()	const; 	Returns	the	data	member.
double	getAmplitude()	const; 	Returns	the	data	member.
void	setName(const	std::string&	name); 	Updates	the	data	member.
void	setTypeName(const	std::string&	type_name); 	Updates	the	data	member.
void	setAmplitude(const	double	amplitude); 	Updates	the	data	member,	but	only	if	the	amplitude	is
between	0	and	1,	inclusive.
double	computeSampleAngle(const	double	frequency,	const	double	sample_number,	const	int
samples_per_second)	const; 	Computes	the	angle	(in	radians)	that	corresponds	to	the	 sample_number ’s
position	from	the	beginning	of	samples.	See	discussion	above	for	mathematical	details.
double	computeSampleCyclePosition(const	double	frequency,	const	double	sample_number,	const	int
samples_per_second)	const; 	Computes	the	position	in	the	cycle	for	 sample_number .	See	discussion	above
for	mathematical	details.
virtual	void	generateSamples(const	double	frequency,	const	double	seconds,	const	int
samples_per_second,	AudioTrack&	track)	const; 	Sets	the	size	of	 track ,	then	for	every	 sample_number 	in	the
track,	sets	the	value	to	the	result	of	 generateOneSample() .
virtual	double	generateOneSample(const	double	frequency,	const	int	sample_number,	const	double
samples_per_second)	const	=	0; 	Pure	virtual	method	that	must	be	overridden	(specialized)	by	the
subclasses.

Special	Note

It	is	recommended	that	you	define	a	constant	in	the	 Waveform.cpp 	file	to	use	the	precise	same	value	for
two_pi 	everywhere	it	is	needed.

const	double	two_pi	=	6.283185307179586476925286766559;

Create	 library-waveform/SineWaveform.{h,cpp}
SineWaveform 	Class
Publicly	inherits	from	 Waveform .

Data	Members:

The	 SineWaveform 	class	does	not	define	any	new	data	members.

public 	Methods:

SineWaveform(const	std::string&	name); 	Constructor	chains	to	the	base	class	constructor.	Uses	“sine”	for
the	type	name.
virtual	~SineWaveform(); 	Empty	body,	but	required.
virtual	double	generateOneSample(const	double	frequency,	const	int	sample_number,	const	double
samples_per_second)	const; 	Computes	the	angle	associated	with	 sample_number .	Computes	the	sine	of	that
angle.	Multiplies	the	result	by	the	amplitude	before	returning	it.	See	 std::sin() .

Create	 library-waveform/SquareWaveform.{h,cpp}
SquareWaveform 	Class
Publicly	inherits	from	 Waveform .

Data	Members:

The	 SquareWaveform 	class	does	not	define	any	new	data	members.

public 	Methods:

SquareWaveform(const	std::string&	name); 	Constructor	chains	to	the	base	class	constructor.	Uses
“square”	for	the	type	name.
virtual	~SquareWaveform(); 	Empty	body,	but	required.
virtual	double	generateOneSample(const	double	frequency,	const	int	sample_number,	const	double
samples_per_second)	const; 	Computes	the	cycle	position	associated	with	 sample_number .	If	it	is	less	than
0.5,	returns	amplitude.	Otherwise,	returns	-amplitude.

Create	 library-waveform/Makefile
This	file	must	contain	rules	such	that	any	of	the	following	commands	will	build	the	 libwaveform.a 	library:

make
make	all

This	file	must	contain	rules	such	that	the	following	command	will	install	the	 libwaveform.a 	library	into	the
lib 	directory,	and	all	 .h 	files	to	the	 include 	directory:

make	install

Create	 library-commands/waveform_test_aux.{h,cpp}
Functions:

void	fill_audio_track_with_waveform(ApplicationData&	app_data); 	Prompts	the	user	for	string	“Waveform
style:	“,	double	“Amplitude:	“,	and	double	“Frequency:	“.	Based	on	the	waveform	style	selected	(“sine”
or	“square”),	creates	a	 SineWaveform 	or	 SquareWaveform 	object,	and	sets	the	amplitude	of	the	waveform.
Then	generates	samples	and	stores	them	in	the	ApplicationData	object’s	AudioTrack	object.	Assumes
that	the	AudioTrack	object’s	meta	data	(seconds,	and	samples	per	second)	are	already	set	correctly.	If
the	user	chooses	a	different	waveform	style,	then	the	error	message	is	displayed:	“Waveform	style
‘USER_RESPONSE’	is	not	known.“,	then	does	not	fill	the	AudioTrack	object	with	data.
void	fill_channels_with_waveforms(ApplicationData&	app_data); 	Sets	the	size	of	the	application	data
object’s	channels	to	2,	the	calls	fill_audio_track_with_waveform	for	each	of	the	channels,	storing	the

AudioTrack	data	in	the	correct	channel.	Displays	“Left	Channel”	or	“Right	Channel”	for	the	0	or	1
channel.
int	waveform_test(ApplicationData&	app_data); 	Configures	the	AudioTrack	and	WAVFile	in	the
ApplicationData	object	using	the	 configure_audio_track_and_wav_file() 	function	from	a	previous	task.
Fills	the	channels	of	the	application	data	object	using	 fill_channels_with_waveforms() ,	then	saves	the
wav	file	with	 save_wav_file() 	from	a	previous	task.	Returns	0.

Update	 library-commands/Makefile
Add	 waveform_test_aux.{h,cpp} 	in	the	appropriate	places	to	add	them	to	the	library	and	install	the	header
file.

Create	 program-waveform-test/waveform_test.cpp
Functions:

int	main(); 	Entry	point	to	the	waveform	test	program.	Should	create	an	 ApplicationData 	and	pass	it	to
the	 waveform_test 	function	found	in	 waveform_test_aux 	and	return	the	result	of	that	function	call.

Create	 program-waveform-test/Makefile
This	file	must	contain	rules	such	that	any	of	the	following	commands	will	build	the	 waveform_test 	program:

make
make	all
make	waveform_test

Create	 program-waveform-test/.gitignore
The	file	 program-waveform-test/.gitignore 	needs	to	store	one	line	of	text:

waveform_test

Update	 Makefile
Update	the	project-level	 Makefile 	so	that	 make 	and	 make	all 	in	the	project	directory	will	call	 make	install 	in
the	 library-waveform 	directory,	and	 make 	in	the	 program-waveform-test 	directory.

Additional	Documentation
TBA

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
TBA

