
CS	3005:	Programming	in	C++
Envelope	Classes
Introduction
Envelopes	are	used	in	audio	synthesis	to	control	the	volume	of	a	sound	over	time.	For	example,	a	sound	may
start	out	loud,	then	become	quieter	over	time.	Or	it	may	take	time	to	reach	full	volume.

Audio	designers	will	try	many	different	envelope	shapes	to	create	different	sounds.

A	simple	envelope	shape	is	the	“Attack/Decay”	(AD)	envelope.	In	this	envelope	style,	the	volume	initially
increases	from	0	to	the	maximum.	It	then	decays	to	0.

A	common	envelope	shape	is	the	“Attack/Decay/Sustain/Release”	(ADSR)	envelope.	In	this	envelope	style,	the
volume	initially	increases	from	0	to	the	maximum.	It	then	decays	to	an	intermediate	(sustain)	level.	Next,	it
stays	at	this	level	for	some	sustain	duration.	Finally,	it	decays	to	0	(release).

You	may	notice	that	the	AD	envelope	is	a	simplified	form	of	the	ADSR	envelope.

Assignment
In	this	assignment,	you	will	create	a	class	hierarchy	to	represent	the	functionality	of	an	envelope,	including

specialization	for	the	ADSR	and	AD	envelopes.

The	 Envelope 	class	will	be	a	base	class.	 ADSREnvelope 	will	inherit	from	 Envelope .	 ADEnvelope 	will	inherit	from
ADSREnvelope .

You	will	also	create	a	simple	program	that	generates	an	envelope	and	displays	its	amplitudes	as	text.	In	a
future	assignment,	you’ll	use	the	envelopes	together	with	waveforms	to	generate	sounds.

A	sample	interaction	with	the	program	may	look	like	this:

$./program-envelope-test/envelope_test	
Samples/Second:	10
Seconds:	1.0
Envelope	style:	ADSR
Maximum	amplitude:	0.75
Attack	seconds:	0.2
Decay	seconds:	0.3
Release	seconds:	0.4
Sustain	amplitude:	0.25

sample_number,amplitude
0,0
1,0.375
2,0.75
3,0.583333
4,0.416667
5,0.25
6,0.25
7,0.1875
8,0.125
9,0.0625

Notice	that	the	output	is	in	CSV	form,	so	you	could	plot	it	to	produce	images	like	shown	above.

This	example	demonstrates	a	user	giving	an	invalid	envelope	style.

$./program-envelope-test/envelope_test	
Samples/Second:	10
Seconds:	1.0
Envelope	style:	USPS
Maximum	amplitude:	0.8
Envelope	style	'USPS'	is	not	known.

sample_number,amplitude
0,0
1,0
2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0

Computing	Envelopes
Let’s	discuss	the	computational	steps	for	the	ADSR	envelope.	Each	envelope	computation	has	a	duration	in
seconds.	We’ll	use	 t 	to	denote	duration.	Each	envelope	computation	also	has	a	samples	per	seconds.	We’ll
use	 sps 	to	denote	this	value.	If	you	multiply	these	two	values,	you	get	the	number	of	samples	that	will	be
computed	by	the	envelope.	We’ll	use	 n 	to	denote	the	number	of	samples.	Let	 a 	be	the	attack	duration	in
seconds,	 d 	be	the	decay	duration	in	seconds,	 s 	be	the	sustain	duration	in	seconds,	and	 r 	be	the	release
duration	in	seconds.

In	order	to	compute	the	amplitudes	for	the	ADSR	envelope,	we	need	to	compute	straight	lines	in	4	different
sections,	with	each	section	connecting	to	the	one	before	and	one	after	it.

Attack	Section
The	attack	section	starts	at	amplitude	0.0	and	ends	at	the	maximum	amplitude.	The	sample	positions	start	at

position	0,	and	end	after	the	attack	duration.	The	position	of	the	end	of	the	attack	duration	can	be	computed
by	 sps	*	a .

Decay	Section
The	decay	section	starts	at	the	maximum	amplitude	and	ends	at	the	sustain	amplitude.	The	sample	positions
start	at	position	where	the	attack	ends,	and	end	after	the	decay	duration.	The	position	of	the	end	of	the
decay	duration	can	be	computed	by	 attack_end	+	sps	*	d .

Sustain	Section
The	sustain	section	starts	at	the	sustain	amplitude	and	ends	at	the	sustain	amplitude.	The	sample	positions
start	at	position	where	the	decay	ends,	and	end	after	the	sustain	duration.	The	sustain	duration	can	be
computed	as	 s	=	t	-	(a+d+r) .

The	position	of	the	end	of	the	sustain	duration	can	be	computed	by	 release_end	-	sps	*	r .

Release	Section
The	release	section	starts	at	the	sustain	amplitude	and	ends	at	0.0	amplitude.	The	sample	positions	start	at
position	where	the	sustain	ends,	and	end	at	the	end	of	the	envelope.	The	position	of	the	end	of	the	release
duration	can	be	computed	by	 t*sps .

Computing	“Straight	Line”	Amplitudes

Each	of	the	sections	above	need	to	compute	a	straight	line	of	amplitudes	for	their	sections.	Each	as	a
starting	amplitude	(y0),	an	ending	amplitude	(y1),	a	starting	position	(x0)	and	an	ending	position	(x1).	Let
x 	be	the	position	we	want	to	compute	for,	and	 y 	be	the	amplitude	we	want	to	compute.

We’ll	use	the	formula	from	algebra	for	computing	straight	lines	from	two	points.

y	=	(x	-	x0)	*	(y1	-	y0)	/	(x1	-	x0)	+	y0

Programming	Requirements
Create	 library-envelope/Envelope.{h,cpp}
Envelope 	Class

Data	Members:

The	 Envelope 	class	should	contain	data	members	to	track	the	following	information.	These	data	members
should	be	 protected 	or	 private .	They	are	not	allowed	to	be	 public .

std::string 	name	for	the	envelope;	Used	to	identify	an	envelope	in	collections	of	many	envelopes.
std::string 	type	name	for	envelope;	Used	to	identify	the	specialized	form	of	the	envelope,	such	as	“AD”
or	“ADSR”.
double 	maximum	amplitude;	The	maximum	amplitude	of	the	envelope.

public 	Methods:

Envelope(const	std::string&	name,	const	std::string&	type_name); 	Constructor	for	the	class.	Initializes
two	data	members	from	the	input	parameters,	and	sets	maximum	amplitude	to	1.
Envelope(const	std::string&	name,	const	std::string&	type_name,	const	double	amplitude); 	Constructor
for	the	class.	Initializes	all	data	members	from	input	parameters.
virtual	~Envelope(); 	Empty	body.	Required	for	polymorphic	class.
virtual	void	generateAmplitudes(const	double	seconds,	const	int	samples_per_second,	AudioTrack&	track)
const	=	0; 	Pure	virtual	method.	Will	be	overridden	by	subclasses	to	generate	amplitude	values	specific
to	envelope	form.
const	std::string&	getName()	const; 	Returns	the	data	member.
const	std::string&	getTypeName()	const; 	Returns	the	data	member.
double	getMaximumAmplitude()	const; 	Returns	the	data	member.
void	setName(const	std::string&	name); 	Sets	the	data	member	from	the	parameter.
void	setTypeName(const	std::string&	type_name); 	Sets	the	data	member	from	the	parameter.

void	setMaximumAmplitude(const	double	amplitude); 	If	 amplitude 	is	greater	than	0,	sets	the	maximum
amplitude	data	member.

Create	 library-envelope/ADSREnvelope.{h,cpp}
ADSREnvelope 	Class
Publicly	inherits	from	 Envelope .

Data	Members:

The	 ADSREnvelope 	class	should	contain	data	members	to	track	the	following	information.	These	data	members
should	be	 protected 	or	 private .	They	are	not	allowed	to	be	 public .

double 	attack	duration	in	seconds;	See	discussion	above	for	more	details.
double 	decay	duration	in	seconds;	See	discussion	above	for	more	details.
double 	sustain	amplitude;	See	discussion	above	for	more	details.
double 	release	duration	in	seconds;	See	discussion	above	for	more	details.

public 	Methods:

ADSREnvelope(const	std::string&	name,	const	std::string&	type_name); 	Constructor	chains,	passing	these
parameters	to	the	parent	class.	Initializes	the	data	members	for	attack,	decay,	sustain,	and	release	to
0.0,	0.0,	0.5	and	0.0,	respectively.
ADSREnvelope(const	std::string&	name,	const	std::string&	type_name,	const	double	maximum_amplitude,
const	double	attack_seconds,	const	double	decay_seconds,	const	double	sustain_amplitude,	const	double
release_seconds); 	Passes	the	first	three	parameters	to	the	parent	class	via	constructor	chaining.	Uses
the	rest	of	the	parameters	to	initialize	the	data	members	for	attack,	decay,	sustain,	and	release.
ADSREnvelope(const	std::string&	name); 	Constructor	chains,	passing	the	parameter	to	the	parent	class.
Also	passes	“ADSR”	as	the	second	parameter	to	the	parent	constructor.	Initializes	the	data	members	for
attack,	decay,	sustain,	and	release	to	0.0,	0.0,	0.5	and	0.0,	respectively.
ADSREnvelope(const	std::string&	name,	const	double	maximum_amplitude,	const	double	attack_seconds,
const	double	decay_seconds,	const	double	sustain_amplitude,	const	double	release_seconds); 	Passes	the
first	two	parameters	to	the	parent	class	via	constructor	chaining.	Also	passes	“ADSR”	as	the	second
parameter	to	the	parent	constructor.	Uses	the	rest	of	the	parameters	to	initialize	the	data	members	for
attack,	decay,	sustain,	and	release.
virtual	~ADSREnvelope(); 	Empty	body.	Required	for	polymorphic	inheritance.
double	getAttackSeconds()	const; 	Returns	the	data	member.
double	getDecaySeconds()	const; 	Returns	the	data	member.
double	getSustainAmplitude()	const; 	Returns	the	data	member.
double	getReleaseSeconds()	const; 	Returns	the	data	member.
void	setAttackSeconds(const	double	attack_seconds); 	If	the	parameter	is	greater	than	0,	sets	the	data
member.
void	setDecaySeconds(const	double	decay_seconds); 	If	the	parameter	is	greater	than	0,	sets	the	data
member.
void	setSustainAmplitude(const	double	sustain_amplitude); 	If	the	parameter	is	greater	than	0,	sets	the
data	member.
void	setReleaseSeconds(const	double	release_seconds); 	If	the	parameter	is	greater	than	0,	sets	the	data
member.
virtual	void	generateAmplitudes(const	double	seconds,	const	int	samples_per_second,	AudioTrack&	track)
const; 	If	the	 seconds 	parameter	is	less	than	the	sum	of	the	attack,	decay,	and	release	durations,	does
nothing.	Otherwise,	sets	the	track	size	using	the	other	parameters.	It	then	computes	the	positions	in	the
track	for	the	transitions	between	attack,	decay,	sustain,	and	release.	It	then	uses	the	other	methods	to
assign	the	amplitudes	to	the	track.
void	assignAttackAmplitudes(const	int	begin,	const	int	end,	AudioTrack&	track,	const	double	a0,	const
double	a1)	const; 	The	positions	in	track	starting	at	 begin 	and	ending	before	 end 	are	updated	to	be	a
linear	ramp	from	 a0 	to	 a1 .
void	assignDecayAmplitudes(const	int	begin,	const	int	end,	AudioTrack&	track,	const	double	a0,	const
double	a1)	const; 	The	positions	in	track	starting	at	 begin 	and	ending	before	 end 	are	updated	to	be	a
linear	ramp	from	 a0 	to	 a1 .
void	assignSustainAmplitudes(const	int	begin,	const	int	end,	AudioTrack&	track,	const	double	a0)	const;
The	positions	in	track	starting	at	 begin 	and	ending	before	 end 	are	updated	to	be	 a0 .
void	assignReleaseAmplitudes(const	int	begin,	const	int	end,	AudioTrack&	track,	const	double	a0,	const
double	a1)	const; 	The	positions	in	track	starting	at	 begin 	and	ending	before	 end 	are	updated	to	be	a
linear	ramp	from	 a0 	to	 a1 .

Create	 library-envelope/ADEnvelope.{h,cpp}
ADEnvelope 	Class
Publicly	inherits	from	 ADSREnvelope .

Data	Members:

The	 ADEnvelope 	class	does	not	define	any	new	data	members.

public 	Methods:

ADEnvelope(const	std::string&	name); 	Passes	the	first	parameter	to	the	parent	class	via	constructor
chaining.	Also	passes	the	values	“AD”,	1.0,	0.0,	0.0,	0.0,	and	0.0.
ADEnvelope(const	std::string&	name,	const	double	maximum_amplitude,	const	double	attack_seconds);
Constructor	chains	to	the	parent	class,	using	the	parameters	here.	Also	uses	“AD”	for	the	type	name,
and	0.0	for	all	other	unspecified	values.
virtual	~ADEnvelope(); 	Empty	body,	but	required.
virtual	void	generateAmplitudes(const	double	seconds,	const	int	samples_per_second,	AudioTrack&	track)
const; 	If	the	 seconds 	passed	as	a	parameter	does	not	allow	for	the	attack	duration	to	complete,	does
nothing.	Otherwise	fills	the	track	data	with	an	attack	and	a	decay	stage.	Uses	the
assignAttackAmplitudes() 	and	 assignDecayAmplitudes() 	methods.

Create	 library-envelope/Makefile
This	file	must	contain	rules	such	that	any	of	the	following	commands	will	build	the	 libenvelope.a 	library:

make
make	all

This	file	must	contain	rules	such	that	the	following	command	will	install	the	 libenvelope.a 	library	into	the
lib 	directory,	and	all	 .h 	files	to	the	 include 	directory:

make	install

Update	 library-commands/wav_file_creator_aux.{h,cpp}
Functions:

void	configure_audio_track(ApplicationData&	app_data); 	This	function	configures	the	seconds	and
samples	per	second	meta	data	for	the	AudioTrack	object	in	the	ApplicationData	object.	It	prompts	the
user	for	the	integer	“Samples/Second:	“	and	the	double	“Seconds:	“,	then	stores	them	in	the	AudioTrack
object.

Create	 library-commands/envelope_test_aux.{h,cpp}
Functions:

void	fill_audio_track_with_envelope(ApplicationData&	app_data); 	Prompts	the	user	for	string	“Envelope
style:	“	and	double	“Maximum	amplitude:	“.	Create	an	envelope	object	based	on	the	user’s	choices.	If
the	user	chose	 ADSR ,	then	prompt	the	user	for	the	doubles	“Attack	seconds:	“,	“Decay	seconds:	“,
“Release	seconds:	“,	and	“Sustain	amplitude:	“.	Use	the	values	to	configure	the	meta	data	of	the
envelope.	If	the	user	chose	 AD 	then	prompt	the	user	for	the	double	“Attack	seconds:	“.	Use	the	value	to
configure	the	meta	data	of	the	envelope.	If	the	user	chose	anything	else	for	the	envelope	style,	give	an
error	message	“Envelope	style	‘USER_CHOICE’	is	not	known.”	If	the	choice	was	one	of	the	allowed	ones,
set	the	envelope’s	maximum	amplitude,	then	fill	the	AudioTrack	object	using	 generateAmplitudes() 	from
the	envelope	object.	Note	that	the	parameters	needed	by	this	method	are	in	the	AudioTrack’s	meta	data.
int	envelope_test(ApplicationData&	app_data); 	Uses	 configure_audio_track() 	to	configure	the
AudioTrack	object	in	the	ApplicationData	object	with	the	seconds	and	samples	per	second	meta	data.
Uses	 fill_audio_track_with_envelope() 	to	fill	the	AudioTrack	object	with	envelope	data,	according	to	the
user’s	choices.	Uses	 display_audio_track() 	to	send	the	AudioTrack	object	to	the	text	output.	Returns	0.

Update	 library-commands/Makefile

Add	 envelope_test_aux.{h,cpp} 	in	the	appropriate	places	to	add	them	to	the	library	and	install	the	header
file.

Create	 program-envelope-test/envelope_test.cpp
Functions:

int	main(); 	Entry	point	to	the	envelope	test	program.	Should	create	an	 ApplicationData 	and	pass	it	to
the	 envelope_test 	function	found	in	 envelope_test_aux 	and	return	the	result	of	that	function	call.

Create	 program-envelope-test/Makefile
This	file	must	contain	rules	such	that	any	of	the	following	commands	will	build	the	 envelope_test 	program:

make
make	all
make	envelope_test

Create	 program-envelope-test/.gitignore
The	file	 program-envelope-test/.gitignore 	needs	to	store	one	line	of	text:

envelope_test

Update	 Makefile
Update	the	project-level	 Makefile 	so	that	 make 	and	 make	all 	in	the	project	directory	will	call	 make	install 	in
the	 library-envelope 	directory,	and	 make 	in	the	 program-envelope-test 	directory.

Additional	Documentation
Detailed	ADSR	Example

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
TBA

https://www.cs.utahtech.edu/cs/3005/assignments.wav_wizard/assignment_14_envelope/example-ADSR.php

