
CS	3005:	Programming	in	C++
Instrument	Class
Introduction
We	will	define	an	instrument	for	audio	generation	as	a	combination	of	a	waveform	and	an	envelope.	The
waveform	will	provide	the	shape	of	the	oscillating	sound	waves	and	the	envelope	will	provide	the	shape	of
the	amplitude	of	individual	notes	played	by	the	instrument.

The	first	example	shows	a	sine	waveform	with	an	ADSR	envelope.

The	second	example	shows	a	square	waveform	with	an	AD	envelope.

Assignment
In	this	assignment,	you	will	create	a	class	to	represent	an	instrument.	This	class	will	also	be	capable	of
rendering	a	sound	for	an	instrument	using	its	waveform	and	envelope.	The	instrument	can	be	used	to
generate	a	variety	of	sounds,	with	different	frequencies	and	durations.

You	will	also	create	a	simple	program	that	generates	an	instrument	and	saves	a	sound	generated	by	the
instrument	to	a	WAV	file.



Sample	interactions	with	the	program	may	look	like	this:

A	sine	waveform	with	an	AD	envelope

$	./program-instrument-test/instrument_test	
Samples/Second:	44100
Seconds:	0.5
Bits/Sample[8,16,24,32]:	32
Waveform	style:	sine
Envelope	style:	AD
Maximum	amplitude:	1.0
Attack	seconds:	0.1
Frequency:	440.0
WAV	filename:	instrument-sine-AD.wav

A	square	waveform	with	an	ADSR	envelope

$	./program-instrument-test/instrument_test	
Samples/Second:	44100
Seconds:	0.5
Bits/Sample[8,16,24,32]:	32
Waveform	style:	square
Envelope	style:	ADSR
Maximum	amplitude:	1.0
Attack	seconds:	0.05
Decay	seconds:	0.15
Release	seconds:	0.005
Sustain	amplitude:	0.7
Frequency:	400.0
WAV	filename:	instrument-square-ADSR.wav

Bad	waveform	or	envelope	names

$	./program-instrument-test/instrument_test	
Samples/Second:	44100
Seconds:	0.5
Bits/Sample[8,16,24,32]:	32
Waveform	style:	fred
Waveform	style	'fred'	is	not	known.
Envelope	style:	wilma
Maximum	amplitude:	1.0
Envelope	style	'wilma'	is	not	known.
Frequency:	440.0
Segmentation	fault	(core	dumped)

The	segmentation	fault	is	because	the	waveform	or	envelope	are	not	configured.	We	will	consider	this	to	be
acceptable	behavior	for	this	test	program.

Multiplying	AudioTrack	Objects
If	two	audio	tracks	have	the	sample	number	of	samples,	you	can	multiply	them	on	a	sample	by	sample	basis.
For	example,	if	the	first	audio	track	has	the	five	values	 [0.1,	0.2,	0.3,	0.4,	-0.5] 	and	the	second	track	has
the	five	values	 [0.6,	0.7,	0.8,	0.9,	1.0] ,	the	result	will	be	and	audio	track	object	with	the	values	 [0.6,
0.14,	0.24,	0.36,	-0.5] .

It	only	makes	sense	to	multiple	two	audio	tracks	if	they	have	the	same	sample	rate	(samples	per	second)	and
duration	(seconds).

Generating	AudioTrack	Samples	for	an	Instrument
The	envelope	for	an	instrument	is	used	to	fill	an	audio	track	object,	using	the	envelope’s	method	for
generating	amplitudes.	Note	this	is	a	set	of	positive	amplitudes	based	on	the	form	of	the	envelope	object.

The	waveform	for	an	instrument	is	used	to	fill	a	different	audio	track	object,	using	the	waveform’s	method
for	generating	samples.	Note	that	this	is	a	set	of	values	that	oscillate	between	positive	and	negative	values
depending	on	the	shape	of	the	waveform,	and	the	frequency	of	the	sample.



Finally,	an	instrument’s	audio	track	samples	are	set	by	multiplying	the	two	audio	track	objects	together.

Creating	an	Instrument
An	instrument	is	a	pairing	of	an	envelope	and	a	waveform.	To	create	an	instrument,	the	envelope	and
waveform	are	created	first,	then	they	are	used	to	configure	the	new	instrument.

Programming	Requirements
Update	 library-audiofiles/AudioTrack.{h,cpp}
AudioTrack 	Class

public 	Methods:

AudioTrack	operator*(const	AudioTrack&	rhs)	const; 	This	overloaded	operator	will	create	a	new
AudioTrack 	object	that	is	the	product	of	the	two	 AudioTrack 	objects.	If	the	two	 AudioTrack 	objects	are
not	compatible,	the	function	will	return	an	empty	 AudioTrack 	object.	The	resulting	 AudioTrack 	object	has
the	same	sample	rate	and	duration	as	the	first	 AudioTrack 	object.	See	the	multiplication	description
above.

Create	 library-instrument/Instrument.{h,cpp}
Instrument 	Class

Data	Members:

The	 Instrument 	class	should	contain	data	members	to	track	the	following	information.	These	data	members
should	be	 protected 	or	 private .	They	are	not	allowed	to	be	 public .

std::string 	name	for	the	instrument;	Used	to	identify	an	instrument	in	collections	of	many	instruments.
std::shared_ptr<Waveform> 	waveform	for	the	instrument;	Used	to	generate	sound	from	the	instrument.
std::shared_ptr<Envelope> 	envelope	for	the	instrument;	Used	to	control	the	amplitude	of	the	sound	from
the	instrument.

public 	Methods:

Instrument(); 	Default	constructor	for	the	class.	Allows	all	data	members	to	be	default	constructed	as
well.
Instrument(const	std::string&	name,	std::shared_ptr<Waveform>	waveform,	std::shared_ptr<Envelope>
envelope); 	Constructor	for	the	class.	Initializes	all	data	members	from	input	parameters.
virtual	~Instrument(); 	Required	for	polymorphic	classes.	Empty	body	for	now.
const	std::string&	getName()	const; 	Return	the	data	member.
std::shared_ptr<Waveform>	getWaveform()	const; 	Return	the	data	member.
std::shared_ptr<Envelope>	getEnvelope()	const; 	Return	the	data	member.
void	setName(const	std::string&	name); 	Update	the	data	member.
void	setWaveform(std::shared_ptr<Waveform>	waveform); 	Update	the	data	member.
void	setEnvelope(std::shared_ptr<Envelope>	envelope); 	Update	the	data	member.
void	generateSamples(const	double	frequency,	const	double	seconds,	const	int	samples_per_second,
AudioTrack&	track)	const; 	Fills	the	 AudioTrack 	object	with	samples	generated	from	the	 Instrument
object.	See	the	description	above.

Create	 library-instrument/Makefile
This	file	must	contain	rules	such	that	any	of	the	following	commands	will	build	the	 libinstrument.a 	library:

make
make	all

This	file	must	contain	rules	such	that	the	following	command	will	install	the	 libinstrument.a 	library	into	the
lib 	directory,	and	all	 .h 	files	to	the	 include 	directory:

make	install



Create	 library-commands/instrument_test_aux.{h,cpp}
Functions:

std::shared_ptr<Waveform>	choose_waveform(ApplicationData&	app_data); 	Allows	the	user	to	choose	a
“Waveform	style:	“.	If	the	user’s	choice	is	“sine”	or	“square”,	then	creates	a	 std::shared_ptr 	object	with
the	correct	type.	The	name	of	the	Waveform	object	created	should	be	the	empty	string.	If	the	user’s
choice	isn’t	then,	sends	a	message	to	the	user	“Waveform	style	‘BAD_USER_CHOICE’	is	not	known.”	In
any	case,	shared	pointer	to	a	 Waveform 	object	is	returned.	In	the	error	case,	the	pointer	is	the	null
pointer.
std::shared_ptr<Envelope>	choose_envelope(ApplicationData&	app_data); 	Allows	the	user	to	choose	a
“Envelope	style:	“	and	“Maximum	amplitude:	“.	If	the	user	chooses	“ADSR”,	creates	a	 std::shared_ptr 	to
ADSREnvelope .	If	the	user	chooses	“AD”,	the	creates	a	shared	pointer	to	 ADEnvelope .	If	the	user	choice	is
anything	else,	then	displays	a	message	for	the	user,	“Envelope	style	‘BAD_USER_CHOICE’	is	not
known.“.	In	the	error	case,	the	shared	pointer	is	set	to	the	null	pointer.	Returns	the	shared	pointer.	The
ADSR	envelope	needs	to	allow	the	user	to	configure	“Attack	seconds:	“,	“Decay	seconds:	“,	“Release
seconds:	“,	and	“Sustain	amplitude:	“.	The	AD	envelope	needs	to	allow	the	user	to	configure	“Attack
seconds:	“.	Either	case	will	set	the	envelope’s	maximum	amplitude	from	the	user’s	response.
std::shared_ptr<Instrument>	create_instrument(ApplicationData&	app_data); 	Uses	other	functions	to	allow
the	user	to	choose	a	waveform	and	an	envelope.	Uses	them	to	create	an	instrument.	The	instrument’s
name	should	be	the	empty	string.	The	instrument	will	be	created	as	a	shared	pointer,	and	returned.
void	fill_audio_track_from_instrument(ApplicationData&	app_data,	std::shared_ptr<Instrument>
instrument_ptr); 	Fetches	the	frequency	from	the	application	data’s	 doubleRegister 	in	slot	0.	Assumes
the	meta	data	of	the	audio	in	the	application	data	has	already	been	configured.	Uses	the	instrument
class	method	to	generate	samples	into	the	application	data’s	audio	track.
int	instrument_test(ApplicationData&	app_data); 	Configures	the	audio	track	and	WAV	file	using
configure_audio_track_and_wav_file() .	Creates	an	instrument	using	 create_instrument() .	Asks	the	user
for	a	“Frequency:	“,	and	stores	it	in	the	application	data’s	 doubleRegister 	in	slot	0.	Calls
fill_audio_track_from_instrument() 	to	fill	the	audio	track	with	samples	from	the	instrument.	Configures
the	channels	in	the	application	data	to	have	2	channels.	Sets	both	of	the	audio	tracks	from	the	audio
track	that	was	filled	from	the	instrument.	Uses	 save_wav_file() 	to	save	the	data	to	a	file.	Returns	0.

Update	 library-commands/Makefile
Add	 instrument_test_aux.{h,cpp} 	in	the	appropriate	places	to	add	them	to	the	library	and	install	the	header
file.

Create	 program-instrument-test/instrument_test.cpp
Functions:

int	main(); 	Entry	point	to	the	instrument	test	program.	Should	create	an	 ApplicationData 	and	pass	it	to
the	 instrument_test 	function	found	in	 instrument_test_aux 	and	return	the	result	of	that	function	call.

Create	 program-instrument-test/Makefile
This	file	must	contain	rules	such	that	any	of	the	following	commands	will	build	the	 instrument_test 	program:

make
make	all
make	instrument_test

Create	 program-instrument-test/.gitignore
The	file	 program-instrument-test/.gitignore 	needs	to	store	one	line	of	text:

instrument_test

Update	 Makefile
Update	the	project-level	 Makefile 	so	that	 make 	and	 make	all 	in	the	project	directory	will	call	 make	install 	in
the	 library-instrument 	directory,	and	 make 	in	the	 program-instrument-test 	directory.

Additional	Documentation



TBA

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
TBA


