
CS	3005:	Programming	in	C++
Collections
Introduction
It	is	common	to	want	to	keep	a	collection	of	instances	of	items	of	the	same	type.	This	will	allow	to	the	same
item	to	be	reused,	rather	than	create	another	item	that	is	identically	configured.

In	particular,	we	will	want	to	keep	a	collection	of	waveforms,	a	collection	of	envelopes,	and	a	collection	of
instruments.

Our	collections	will	require	a	unique	name	for	each	item	in	a	collection.	For	example,	“Cello”	and	“Violin”
are	different	names	we	could	use	for	two	separate	instruments.	However,	if	we	tried	to	store	another
“Violin”	in	the	collection,	it	would	overwrite	the	old	item	with	the	new	one.

Assignment
In	this	assignment,	you	will	create	classes	to	represent	collections	of	waveforms,	envelopes,	and
instruments.	These	classes	will	be	capable	of	storing	and	retrieving	items.	They	will	also	allow	for	the
collection	to	be	iterated	over.

Iterators

For	each	of	our	collections	we	will	provide	a	 begin 	and	 end 	method	to	allow	for	iteration	over	the	collection.
These	methods	will	use	the	underlying	iterators	for	the	standard	library	class	we	are	using	for	storage.

Programming	Requirements
Create	 library-waveform/Waveforms.{h,cpp}
Waveforms 	Class

Data	Members:

The	 Waveforms 	class	should	contain	data	members	to	track	the	following	information.	These	data	members
should	be	 protected 	or	 private .	They	are	not	allowed	to	be	 public .

std::map<std::string,	std::shared_ptr<Waveform>> 	a	map	of	names	to	waveforms;	Used	to	store	all
waveforms.

public 	Type	Definitions:

typedef	std::map<std::string,	std::shared_ptr<Waveform>>::iterator	iterator;
typedef	std::map<std::string,	std::shared_ptr<Waveform>>::const_iterator	const_iterator;

public 	Methods:

Waveforms(); 	Default	constructor,	does	not	need	to	do	anything.
virtual	~Waveforms(); 	Required,	but	empty.
void	addWaveform(const	std::string&	name,	std::shared_ptr<Waveform>	waveform); 	Stores	 waveform 	in	the
map,	using	 name 	as	the	key.
std::shared_ptr<Waveform>	getWaveform(const	std::string&	name); 	If	 name 	exists	in	the	map,	returns	the
waveform	associated	with	 name .	Otherwise,	returns	 nullptr .
iterator	begin(); 	Returns	an	iterator	to	the	first	item	in	the	collection.
const_iterator	begin()	const; 	Returns	a	constant	iterator	to	the	first	item	in	the	collection.
iterator	end(); 	Returns	an	iterator	to	the	end	item	in	the	collection.	This	is	the	item	that	doesn’t	exist.
const_iterator	end()	const; 	Returns	a	constant	iterator	to	the	end	item	in	the	collection.	This	is	the
item	that	doesn’t	exist.

Update	 library-waveform/Makefile



Add	 Waveforms.{h,cpp} 	in	the	appropriate	places	to	add	them	to	the	library	and	install	the	header	file.

Create	 library-envelope/Envelopes.{h,cpp}
Envelopes 	Class

Data	Members:

The	 Envelopes 	class	should	contain	data	members	to	track	the	following	information.	These	data	members
should	be	 protected 	or	 private .	They	are	not	allowed	to	be	 public .

std::map<std::string,	std::shared_ptr<Envelope>> 	a	map	of	names	to	envelopes;	Used	to	store	all
envelopes.

public 	Type	Definitions:

typedef	std::map<std::string,	std::shared_ptr<Envelope>>::iterator	iterator; 	Makes	Envelopes::iterator
be	an	alias	for	the	map	iterator.
typedef	std::map<std::string,	std::shared_ptr<Envelope>>::const_iterator	const_iterator; 	Makes
Envelopes::iterator	be	an	alias	for	the	map	iterator.

public 	Methods:

Envelopes(); 	Default	constructor,	does	not	need	to	do	anything.
virtual	~Envelopes(); 	Required,	but	empty.
void	addEnvelope(const	std::string&	name,	std::shared_ptr<Envelope>	envelope); 	Stores	 envelope 	in	the
map,	using	 name 	as	the	key.
std::shared_ptr<Envelope>	getEnvelope(const	std::string&	name); 	If	 name 	exists	in	the	map,	returns	the
envelope	associated	with	 name .	Otherwise,	returns	 nullptr .
iterator	begin(); 	Returns	an	iterator	to	the	first	item	in	the	collection.
const_iterator	begin()	const; 	Returns	a	constant	iterator	to	the	first	item	in	the	collection.
iterator	end(); 	Returns	an	iterator	to	the	end	item	in	the	collection.	This	is	the	item	that	doesn’t	exist.
const_iterator	end()	const; 	Returns	a	constant	iterator	to	the	end	item	in	the	collection.	This	is	the
item	that	doesn’t	exist.

Update	 library-envelope/Makefile
Add	 Envelopes.{h,cpp} 	in	the	appropriate	places	to	add	them	to	the	library	and	install	the	header	file.

Create	 library-instrument/Instrumentarium.{h,cpp}
Instrumentarium 	Class

Data	Members:

The	 Instrumentarium 	class	should	contain	data	members	to	track	the	following	information.	These	data
members	should	be	 protected 	or	 private .	They	are	not	allowed	to	be	 public .

std::map<std::string,	std::shared_ptr<Instrument>> 	a	map	of	names	to	instruments;	Used	to	store	all
instruments.

public 	Type	Definitions:

typedef	std::map<std::string,	std::shared_ptr<Instrument>>::iterator	iterator; 	Makes
Instrumentarium::iterator	be	an	alias	for	the	map	iterator.
typedef	std::map<std::string,	std::shared_ptr<Instrument>>::const_iterator	const_iterator; 	Makes
Instrumentarium::iterator	be	an	alias	for	the	map	iterator.

public 	Methods:

Instrumentarium(); 	Default	constructor,	does	not	need	to	do	anything.
virtual	~Instrumentarium(); 	Required,	but	empty.



void	addInstrument(const	std::string&	name,	std::shared_ptr<Instrument>	instrument); 	Stores	 instrument
in	the	map,	using	 name 	as	the	key.
std::shared_ptr<Instrument>	getInstrument(const	std::string&	name); 	If	 name 	exists	in	the	map,	returns
the	instrument	associated	with	 name .	Otherwise,	returns	 nullptr .
iterator	begin(); 	Returns	an	iterator	to	the	first	item	in	the	collection.
const_iterator	begin()	const; 	Returns	a	constant	iterator	to	the	first	item	in	the	collection.
iterator	end(); 	Returns	an	iterator	to	the	end	item	in	the	collection.	This	is	the	item	that	doesn’t	exist.
const_iterator	end()	const; 	Returns	a	constant	iterator	to	the	end	item	in	the	collection.	This	is	the
item	that	doesn’t	exist.

Update	 library-instrument/Makefile
Add	 Instrumentarium.{h,cpp} 	in	the	appropriate	places	to	add	them	to	the	library	and	install	the	header	file.

Additional	Documentation
TBA

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
TBA


