
CS	3005:	Programming	in	C++
Factories
Introduction
In	object	oriented	programming,	a	factory	is	a	class	that	can	create	instances	of	other	classes.	It	is	a
common	pattern	to	create	a	factory	that	is	capable	of	constructing	an	instance	from	a	class	within	a	class
hierarchy.	The	object	returned	is	a	polymorphic	instance	of	the	base	class.

Read	more	at	the	Wikipedia	article	on	the	factory	method.

Assignment
In	this	assignment,	you	will	create	factory	classes	for	the	waveform	and	envelope	hierarchies.

enum

An	enumeration	(enum 	in	C++)	is	a	user	defined	type	allowing	the	user	to	specify	symbols	to	represent	a
group	of	related	unique	constants.

The	syntax	is	as	follows:

enum	TypeNameYouDeclare	{	CONSTANT1,	CONSTANT2,	...	};

This	declares	a	new	type	 TypeNameYouDeclare ,	with	possible	values	 CONSTANT1 ,	 CONSTANT2 ,	etc.

Class	Data	Members

A	class	data	member	is	declared	with	the	 static 	modifier.	For	example:

class	X	{
public:
		const	static	int	ONE;
};

A	class	data	member	is	initialized	like	a	global	variable	in	the	implementation	file.	For	example:

const	static	int	X::ONE	=	1;

Class	Methods

A	class	method	can	be	called	from	the	class,	or	from	an	instance	of	the	class.	It	is	allowed	to	use	class	data
members,	but	there	is	no	 this 	pointer	to	an	instance,	so	instance	data	members	and	methods	are	not
accessible.

Simple	example	of	declaration	in	the	header	file:

class	X	{
public:
		static	int	add(int	a,	int	b);
};

Then	in	the	implementation	file:

static	int	X::add(int	a,	int	b)	{
		//	not	allowed	to	access	instance	data	members
		return	a	+	b;
}

Programming	Requirements
Create	 library-waveform/WaveformFactory.{h,cpp}

https://en.wikipedia.org/wiki/Factory_method_pattern

WaveformFactory 	Class

Data	Members:

The	 WaveformFactory 	class	will	not	have	any	private	data	members.	The	class	will	not	need	to	be	instantiated.

public 	Class	Data	Members:

const	static	std::vector<std::string>	WaveformName; 	This	vector	stores	the	names	of	all	waveforms	that
can	be	created.	The	names	must	be	entered	in	the	same	order	as	the	constants	in	 WaveformId .	The
names	are	“sine”,	“square”,	and	“error”.	Class	data	members	are	declared	in	the	header	file,	and
initialized	in	the	implementation	file.	The	initialization	looks	like	a	global	variable	initialization.	It	is
outside	of	any	code	block.

public 	Enumerations:

WaveformId 	needs	to	have	constants	 WF_SINE,	WF_SQUARE,	WF_ERROR .

public 	Methods:

static	std::unique_ptr<Waveform>	create(WaveformId	id,	const	std::string&	name); 	Class	method	to
create	a	waveform	using	a	 WaveformId .	 name 	is	passed	to	the	waveform’s	constructor.	If	the	 id 	is	not	a
valid	type,	the	returned	pointer	should	be	set	to	 nullptr .
static	std::unique_ptr<Waveform>	create(const	std::string&	id,	const	std::string&	name); 	Class	method
to	create	a	waveform	using	a	string	from	 WaveformName 	to	identify	the	type	of	waveform.	 name 	is	passed
to	the	waveform’s	constructor.	This	method	should	lookup	the	correct	 WaveformId 	from	the	 id ,	and	call
the	other	 create 	method	with	that	 WaveformId .
static	WaveformId	stringToWaveformId(const	std::string&	id); 	Given	the	string	 id ,	find	the
corresponding	 WaveformId .	Returns	 WF_ERROR 	if	the	string	 id 	does	not	correspond	to	a	known	waveform.
static	bool	validStringId(const	std::string&	id); 	Returns	true	if	 id 	is	a	valid	waveform	name,	false
otherwise.
virtual	~WaveformFactory()	=	default; 	Just	in	case	someone	instantiates	this	class.	Provide	a	virtual,
empty	destructor.

Update	 library-waveform/Makefile
Add	 WaveformFactory.{h,cpp} 	in	the	appropriate	places	to	add	them	to	the	library	and	install	the	header	file.

Create	 library-envelope/EnvelopeFactory.{h,cpp}
EnvelopeFactory 	Class

Data	Members:

The	 EnvelopeFactory 	class	will	not	have	any	private	data	members.	The	class	will	not	need	to	be	instantiated.

public 	Class	Data	Members:

const	static	std::vector<std::string>	EnvelopeName; 	This	vector	stores	the	names	of	all	envelopes	that
can	be	created.	The	names	must	be	entered	in	the	same	order	as	the	constants	in	 EnvelopeId .	The
names	are	“AD”,	“ADSR”,	and	“error”.	Class	data	members	are	declared	in	the	header	file,	and
initialized	in	the	implementation	file.	The	initialization	looks	like	a	global	variable	initialization.	It	is
outside	of	any	code	block.

public 	Enumerations:

EnvelopeId 	needs	to	have	constants	 EN_AD,	EN_ADSR,	EN_ERROR .

public 	Methods:

static	std::unique_ptr<Envelope>	create(EnvelopeId	id,	const	std::string&	name); 	Class	method	to

create	an	envelope	using	an	 EnvelopeId .	 name 	is	passed	to	the	envelope’s	constructor.	If	the	 id 	is	not	a
valid	type,	the	returned	pointer	should	be	set	to	 nullptr .
static	std::unique_ptr<Envelope>	create(const	std::string&	id,	const	std::string&	name); 	Class	method
to	create	an	envelope	using	a	string	from	 EnvelopeName 	to	identify	the	type	of	envelope.	 name 	is	passed
to	the	envelope’s	constructor.	This	method	should	lookup	the	correct	 EnvelopeId 	from	the	 id ,	and	call
the	other	 create 	method	with	that	 EnvelopeId .
static	EnvelopeId	stringToEnvelopeId(const	std::string&	id); 	Given	the	string	 id ,	find	the
corresponding	 EnvelopeId .	Returns	 EN_ERROR 	if	the	string	 id 	does	not	correspond	to	a	known	envelope.
static	bool	validStringId(const	std::string&	id); 	Returns	true	if	 id 	is	a	valid	envelope	name,	false
otherwise.
virtual	~EnvelopeFactory()	=	default; 	Just	in	case	someone	instantiates	this	class.	Provide	a	virtual,
empty	destructor.

Update	 library-envelope/Makefile
Add	 EnvelopeFactory.{h,cpp} 	in	the	appropriate	places	to	add	them	to	the	library	and	install	the	header	file.

Additional	Documentation
TBA

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
TBA

