
CS	3005:	Programming	in	C++
Instrument	Designer
Introduction
An	instrument	designer	tool	should	allow	a	user	to	create	an	instrument	by	combining	waveforms	and
envelopes	to	create	an	instrument’s	sound.	The	program	should	allow	the	user	to	also	hear	the	sound	of	the
instrument	by	writing	the	sound	to	a	WAV	file.

Assignment
In	this	assignment,	you	will	create	the	instrument	designer	program.	This	will	be	a	text	menu	based	system,
where	the	user	can	create	instances	of	waveforms,	envelopes,	and	instruments.	The	user	will	also	be	able	to
create	WAV	files	that	can	be	played	to	demonstrate	the	sound	of	the	instruments.

The	commands	this	program	will	have	are	listed	in	this	table.

Command Prefixable? Function Description
help no menuUI Display	help	message.
menu no menuUI Display	help	message.
# yes commentUI Skip	to	end	of	line	(comment).
comment no commentUI Skip	to	end	of	line	(comment).
echo no echoUI Echo	back	the	arguments	given.
quit no quitUI Terminate	the	program.
list-waveforms no listWaveformsUI List	waveforms	in	the	inventory.
add-waveform no addWaveformUI Add	waveform	to	the	inventory.
edit-waveform no editWaveformUI Edit	waveform	in	the	inventory.
list-envelopes no listEnvelopesUI List	envelopes	in	the	inventory.
add-envelope no addEnvelopeUI Add	envelope	to	the	inventory.
edit-envelope no editEnvelopeUI Edit	envelope	in	the	inventory.

list-instruments no listInstrumentsUI
List	instruments	in	the
inventory.

add-instrument no addInstrumentUI
Add	instrument	to	the
inventory.

edit-instrument no editInstrumentUI
Edit	instrument	in	the
inventory.

record-instrument-note no recordInstrumentNoteUI
Record	a	note	for	an	instrument
to	a	WAV	file.

configure-audio-track-and-
wav-file no configure_audio_track_and_wav_file

Configure	meta	data	for	the
audio	track	and	WAV	file.

Command	indicates	the	command	the	user	types	to	request	the	command.
Prefixable?	indicates	if	the	command	should	be	searched	for	as	a	prefix	(the	first	characters)	of	the
command	typed.
Function	indicates	the	function	that	the	command	will	call	when	it	is	executed.
Description	indicates	the	description	of	the	command.

Note	that	some	of	these	commands	are	the	same	as	were	available	in	the	previous	assignment.

Example	Session
This	sample	session	is	kind	of	long.	It	builds	several	waveforms,	envelopes,	and	instruments.	It	edits	a
waveform,	an	envelope,	and	an	instrument.	It	displays	the	lists	of	waveforms,	envelopes,	and	instruments.	It
also	generates	WAV	files	for	a	couple	of	instruments.	Some	of	the	assignment	instructions	will	refer	to	this
sample	session	to	explain	the	output	of	several	methods.

$./program-instrument-designer/instrument_designer	
Choice?	add-waveform
Waveform	name:	sine-loud	
Waveform	type:	sine

Amplitude:	1.0
Choice?	add-waveform
Waveform	name:	sine-soft
Waveform	type:	sine
Amplitude:	0.5
Choice?	add-waveform
Waveform	name:	square-loud
Waveform	type:	square
Amplitude:	1.0
Choice?	edit-waveform
Waveform	name:	sine-soft
Amplitude(0.5):	0.6
Choice?	list-waveforms
sine-loud	:	sine-loud	sine	1
sine-soft	:	sine-soft	sine	0.6
square-loud	:	square-loud	square	1
Choice?	add-envelope
Envelope	name:	AD-quick
Envelope	type:	AD
Maximum	amplitude:	1.0
Attack	seconds:	0.01
Choice?	add-envelope
Envelope	name:	AD-slow
Envelope	type:	AD
Maximum	amplitude:	1.0
Attack	seconds:	0.2
Choice?	add-envelope
Envelope	name:	ADSR-1
Envelope	type:	ADSR
Maximum	amplitude:	1.0
Attack	seconds:	0.01
Decay	seconds:	0.1
Sustain	amplitude:	0.7
Release	seconds:	0.02
Choice?	edit-envelope
Envelope	name:	AD-slow
Maximum	amplitude(1):	1.0
Attack	seconds(0.2):	0.25
Choice?	list-envelopes
AD-quick	:	AD-quick	AD	1
AD-slow	:	AD-slow	AD	1
ADSR-1	:	ADSR-1	ADSR	1
Choice?	add-instrument
Instrument	name:	quick-loud-square
Waveform	name:	square-loud
Envelope	name:	AD-quick
Choice?	add-instrument
Instrument	name:	ADSR-sine
Waveform	name:	sine-soft
Envelope	name:	ADSR-1
Choice?	edit-instrument
Instrument	name:	ADSR-sine
Waveform	name:	sine-loud
Envelope	name:	ADSR-1
Choice?	list-instruments
ADSR-sine	:	sine-loud	ADSR-1
quick-loud-square	:	square-loud	AD-quick
Choice?	configure-audio-track-and-wav-file
Samples/Second:	44100
Seconds:	1.0
Bits/Sample[8,16,24,32]:	32
Choice?	record-instrument-note
Instrument	name:	ADSR-sine
Frequency:	261.626
WAV	filename:	middle-c-adsr-sine.wav
Choice?	record-instrument-note
Instrument	name:	quick-loud-square
Frequency:	523.251
WAV	filename:	c5-loud-square.wav
Choice?	quit

The	WAV	files	created	are	available	for	download.	You	should	compare	the	WAV	files	created	by	your
program	with	these.

c5-loud-square.wav
middle-c-adsr-sine.wav

Menu	Example

$./program-instrument-designer/instrument_designer	
Choice?	menu
Options	are:
#	-	Skip	to	end	of	line	(comment).
add-envelope	-	Add	envelope	to	the	inventory.
add-instrument	-	Add	instrument	to	the	inventory.
add-waveform	-	Add	waveform	to	the	inventory.
comment	-	Skip	to	end	of	line	(comment).
configure-audio-track-and-wav-file	-	Configure	meta	data	for	the	audio	track	and	WAV	file.
echo	-	Echo	back	the	arguments	given.
edit-envelope	-	Edit	envelope	in	the	inventory.
edit-instrument	-	Edit	instrument	in	the	inventory.
edit-waveform	-	Edit	waveform	in	the	inventory.
help	-	Display	help	message.
list-envelopes	-	List	envelopes	in	the	inventory.
list-instruments	-	List	instruments	in	the	inventory.
list-waveforms	-	List	waveforms	in	the	inventory.
menu	-	Display	help	message.
quit	-	Terminate	the	program.
record-instrument-note	-	Record	a	note	for	an	instrument	to	a	WAV	file.

Choice?	quit

Error	Messages	Example

$./program-instrument-designer/instrument_designer	
Choice?	add-waveform
Waveform	name:	fred
Waveform	type:	triangle
Unable	to	create	a	waveform	of	type	'triangle'.
Choice?	add-envelope
Envelope	name:	wilma
Envelope	type:	ADAD
Unable	to	create	an	envelope	of	type	'ADAD'.
Choice?	edit-waveform
Waveform	name:	barney
Unable	to	find	a	waveform	with	name	'barney'.
Choice?	edit-envelope
Envelope	name:	betty
Unable	to	find	an	envelope	with	name	'betty'.
Choice?	add-waveform
Waveform	name:	fred
Waveform	type:	sine
Amplitude:	1.0
Choice?	add-envelope
Envelope	name:	wilma
Envelope	type:	AD
Maximum	amplitude:	1.0
Attack	seconds:	0.1
Choice?	add-instrument
Instrument	name:	barney
Waveform	name:	bambam
Envelope	name:	dino
bambam	does	not	name	a	waveform	in	this	application.
Choice?	add-instrument
Instrument	name:	flintstone
Waveform	name:	fred
Envelope	name:	dino
dino	does	not	name	an	envelope	in	this	application.
Choice?	edit-instrument
Instrument	name:	flintstone
Waveform	name:	fred
Envelope	name:	wilma
flintstone	does	not	name	an	instrument	in	this	application.
Choice?	record-instrument-note
Instrument	name:	flintstone
flintstone	does	not	name	an	instrument	in	this	application.

https://www.cs.utahtech.edu/cs/3005/assignments.wav_wizard/assignment_19_instrument_designer/c5-loud-square.wav
https://www.cs.utahtech.edu/cs/3005/assignments.wav_wizard/assignment_19_instrument_designer/middle-c-adsr-sine.wav

Choice?	quit

Programming	Requirements
Update	 library-application/ApplicationData.{h,cpp}
We	will	update	the	 ApplicationData 	class	to	support	collections	of	 Waveform ,	 Envelope ,	and	 Instrument
objects.

ApplicationData 	Class

Data	Members:

These	additional	data	members	should	be	in	the	 private 	or	 protected 	section	of	the	class.	No	 public 	data
members	are	allowed.	The	data	members	allow	the	program	to	keep	track	of	collections	of	 Waveform ,
Envelope ,	and	 Instrument 	objects.

Waveforms 	a	collection	of	waveforms.
Envelopes 	a	collection	of	envelopes.
Instrumentarium 	a	collection	of	instruments.

public 	Methods:

We	need	to	provide	non- const 	versions	of	these	methods	to	support	changing	the	contents	of	the	collections.
We	also	need	 const 	versions	for	some	read-only	access	to	the	contents	of	the	collections.

Constructor:	No	changes	needed.	The	new	data	members	all	have	default	constructors	that	create	empty
collections,	as	we	desire.
Waveforms&	getWaveforms(); 	Returns	the	data	member.
const	Waveforms&	getWaveforms()	const; 	Returns	the	data	member.
Envelopes&	getEnvelopes(); 	Returns	the	data	member.
const	Envelopes&	getEnvelopes()	const; 	Returns	the	data	member.
Instrumentarium&	getInstrumentarium(); 	Returns	the	data	member.
const	Instrumentarium&	getInstrumentarium()	const; 	Returns	the	data	member.

Create	 library-commands/instrument_designer_aux.{h,cpp}
These	files	will	contain	the	necessary	user	interaction	commands	to	create	the	functionality	of	the
instrument	designer	program.

Functions:
void	listWaveformsUI(ApplicationData&	app_data); 	Loops	through	the	waveforms	in	the	 Waveforms
collection	from	the	 ApplicationData 	object	and	displays	them	as	shown	in	the	example	above.
void	addWaveformUI(ApplicationData&	app_data); 	Prompts	the	user	for	data	necessary	to	add	a	waveform
to	the	collection.	Uses	the	 WaveformFactory 	to	create	a	 Waveform 	object	and	adds	it	to	the	collection.	See
the	example	above	for	details	of	the	user	interaction.
void	editWaveformUI(ApplicationData&	app_data); 	Retrieves	the	user	selected	waveform	from	the
collection,	and	allows	the	user	to	change	the	parameters	of	the	waveform.	See	the	example	above	for
details	of	the	user	interaction.
void	listEnvelopesUI(ApplicationData&	app_data); 	Displays	the	envelopes	in	the	format	shown	in	the
example	above.
void	addEnvelopeUI(ApplicationData&	app_data); 	Prompts	the	user	for	data	necessary	to	add	an	envelope
to	the	collection.	Uses	the	factory	to	create	an	envelope	object	and	adds	it	to	the	collection.	See	the
example	above	for	details	of	the	user	interaction.
void	editEnvelopeUI(ApplicationData&	app_data); 	Retrieves	the	user	selected	envelope	from	the
collection,	and	allows	the	user	to	change	the	parameters	of	the	envelope.	See	the	example	above	for
details	of	the	user	interaction.
void	listInstrumentsUI(ApplicationData&	app_data); 	Displays	the	instruments	in	the	format	shown	in	the
example	above.
void	addInstrumentUI(ApplicationData&	app_data); 	Prompts	the	user	for	data	necessary	to	add	an
instrument	to	the	collection.	Uses	the	factory	to	create	an	instrument	object	and	adds	it	to	the
collection.	See	the	example	above	for	details	of	the	user	interaction.
void	editInstrumentUI(ApplicationData&	app_data); 	Retrieves	the	user	selected	instrument	from	the
collection,	and	allows	the	user	to	change	the	parameters	of	the	instrument.	See	the	example	above	for

details	of	the	user	interaction.
void	put_frequency_in_register(ApplicationData&	app_data); 	Prompts	the	user	for	a	double,	“Frequency:
“.	Stores	it	in	register	 0 	of	the	application	data.
void	recordInstrumentNoteUI(ApplicationData&	app_data); 	Allows	the	user	to	select	an	instrument.	Then
uses	 put_frequency_in_register 	to	allow	the	user	to	select	a	frequency.	Uses
fill_audio_track_from_instrument 	to	fill	the	audio	track	with	audio	data	from	the	instrument.	Configures
the	channels	in	the	application	data	to	have	two	tracks,	then	copies	the	audio	track	into	both	audio
tracks.	Uses	 save_wav_file ,	to	create	a	WAV	file.
int	register_instrument_designer_commands(ApplicationData&	app_data); 	Registers	all	of	the	commands	in
the	table	above	to	the	application	data.	The	commands	that	are	the	same	as	the	menu	test	program	can
be	added	by	calling	 register_menu_test_commands .	Returns	0.
int	instrument_designer(ApplicationData&	app_data); 	Registers	the	commands	for	the	instrument
designer,	then	starts	the	main	loop.	Returns	0.

Update	 library-commands/Makefile
Add	 instrument_designer_aux.{h,cpp} 	in	the	appropriate	places	to	add	them	to	the	library	and	install	the
header	file.

Create	 program-instrument-designer/instrument_designer.cpp
Functions:

int	main(); 	Entry	point	to	the	instrument	designer	program.	Should	create	an	 ApplicationData 	and	pass
it	to	the	 instrument_designer 	function	and	return	the	result	of	that	function	call.

Create	 program-instrument-designer/Makefile
This	file	must	contain	rules	such	that	any	of	the	following	commands	will	build	the	 instrument_designer
program:

make
make	all
make	instrument_designer

Create	 program-instrument-designer/.gitignore
The	file	needs	to	store	one	line	of	text:

instrument_designer

This	will	prevent	the	executable	program	from	being	committed	to	the	repository.	It	is	a	derived	file.

Update	 Makefile
Update	the	project-level	Makefile	so	that	 make 	and	 make	all 	in	the	project	directory	will	call	 make 	in	the
program-instrument-designer 	directory.
If	necessary,	make	sure	the	order	of	make	commands	is	correct	to	build	prerequisite	libraries	in	the
correct	order.

Additional	Documentation
TBA

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)

TBA

