
CS	3005:	Programming	in	C++
Score	Editor
Introduction
We	are	adding	support	for	envelopes	to	the	score	editor	program	now.	This	includes	user	commands	to	add,
edit,	and	list	envelopes.	It	also	includes	a	command	to	read	a	score	file	that	contains	waveforms	and
envelopes.

Future	assignments	will	continue	to	add	functionality	to	the	program.

Syntax	in	the	 .score 	file	for	an	envelope
This	format	was	designed	to	be	read	using	the	C++	standard	library’s	 >> 	operator.	All	values	are
whitespace	delimited.	By	context,	your	code	should	be	able	to	determine	whether	the	next	value	is	a
std::string 	or	a	 double .

The	ENVELOPE	keyword	must	always	be	followed	by	the	envelope	name	and	the	envelope	type.

Below	you	will	see	the	possible	fields	that	can	be	present	for	various	envelope	types.	Note	that	the
parameters,	such	as	DECAY-SECONDS	and	SUSTAIN-AMPLITUDE,	are	all	optional,	and	order	does	not
matter.	If	not	specified,	then	the	value	set	in	the	default	constructor	should	be	left	in	place.	If	accidentally
specified	more	than	once,	the	last	value	should	be	used.

If	there	is	no	 ENVELOPE-END 	keyword,	then	the	envelope	is	invalid,	and	should	not	be	added	to	the	score.

ADSR	Envelope

ENVELOPE	name1	ADSR
		MAXIMUM-AMPLITUDE	0.25
		ATTACK-SECONDS	0.01
		DECAY-SECONDS	0.02
		SUSTAIN-AMPLITUDE	0.5
		RELEASE-SECONDS	0.03
ENVELOPE-END

AD	Envelope

ENVELOPE	name2	AD
		MAXIMUM-AMPLITUDE	0.25
		ATTACK-SECONDS	0.01
ENVELOPE-END

Other	Envelope

If	you	have	other	envelope	types	implemented,	please	add	them	to	the	reader.

Notes	on	the	 ScoreReader::readEnvelope 	method
The	method	is	called	after	the	 ENVELOPE 	keyword	has	been	read,	so	it	will	start	reading	the	name	and
type.
If	the	envelope	name	refers	to	an	envelope	already	existing	in	the	score,	the	method	still	needs	to	read
until	the	 ENVELOPE-END 	keyword,	but	it	should	not	make	any	changes	to	the	existing	envelope.
If	the	envelope	name	does	not	exist	in	the	score,	the	method	should	use	the	factory	to	create	an
envelope	and	add	it	to	the	score.
Each	of	the	keywords	encountered	should	be	consumed	by	the	method,	and	set	the	appropriate	fields	in
the	envelope,	if	the	envelope	is	new.
Any	word	that	is	read	in	a	position	that	should	be	a	keyword,	but	is	not	a	recognized	keyword,	should
cause	the	envelope	to	not	be	added	to	the	score.	The	method	should	return	immediately	if	this	happens.
If	the	ending	keyword	is	not	found	before	the	end	of	the	input	stream,	the	envelope	should	not	be	added
to	the	score.
Under	normal	operation,	the	method	returns	the	envelope	pointer,	whether	it	is	a	new	pointer	that	has



been	added	to	the	score,	or	it	is	an	already	existing	envelope	in	the	score.
If	an	error	occurs,	such	as	reading	non-keyword	or	end	of	input	stream	without	ending	keyword,	the
method	should	return	a	null	pointer.

Assignment
Here	are	the	new	commands	that	are	required	for	this	assignment.	Previous	commands	are	still	required.

Command Prefixable? Function Description
score-read no readScoreUI Read	score	from	file.
score-list-envelopes no listScoreEnvelopesUI List	envelopes	in	the	score.
score-add-envelope no addScoreEnvelopeUI Add	envelope	to	the	score.
score-edit-envelope no editScoreEnvelopeUI Edit	envelope	in	the	score.

Example	Session

$	./program-score-editor/score_editor	
Choice?	menu
Options	are:
		#	-	Skip	to	end	of	line	(comment).
		comment	-	Skip	to	end	of	line	(comment).
		echo	-	Echo	back	the	arguments	given.
		help	-	Display	help	message.
		menu	-	Display	help	message.
		quit	-	Terminate	the	program.
		score-add-envelope	-	Add	envelope	to	the	score.
		score-add-waveform	-	Add	waveform	to	the	score.
		score-edit-envelope	-	Edit	envelope	in	the	score.
		score-edit-waveform	-	Edit	waveform	in	the	score.
		score-list-envelopes	-	List	envelopes	in	the	score.
		score-list-waveforms	-	List	waveforms	in	the	score.
		score-read	-	Read	score	from	file.

Choice?	score-add-envelope
Envelope	name:	adsr1
Envelope	type:	ADSR
Maximum	amplitude:	0.1
Attack	seconds:	0.2
Decay	seconds:	0.3
Sustain	amplitude:	0.4
Release	seconds:	0.5
Choice?	score-add-envelope
Envelope	name:	ad1
Envelope	type:	AD
Maximum	amplitude:	0.6
Attack	seconds:	0.7
Choice?	score-edit-envelope
Envelope	name:	ad1
Maximum	amplitude(0.6):	0.11
Attack	seconds(0.7):	0.12
Choice?	score-edit-envelope
Envelope	name:	adsr1
Maximum	amplitude(0.1):	0.21
Attack	seconds(0.2):	0.22
Decay	seconds(0.3):	0.23
Sustain	amplitude(0.4):	0.24
Release	seconds(0.5):	0.25
Choice?	score-list-envelopes
ad1	:	ad1	AD	0.11
adsr1	:	adsr1	ADSR	0.21
Choice?	quit

Programming	Requirements
Update	 library-envelope/Envelope.h
These	constants	should	be	used	by	the	 ScoreReader ,	instead	of	using	string	literals.

const	std::string	MAXIMUM_AMPLITUDE	=	"MAXIMUM-AMPLITUDE"; 	A	global	constant.	This	can	be	used	by	the



ScoreReader 	to	reduce	the	number	of	“magic”	strings.
const	std::string	ATTACK_SECONDS	=	"ATTACK-SECONDS"; 	A	global	constant.	This	can	be	used	by	the
ScoreReader 	to	reduce	the	number	of	“magic”	strings.
const	std::string	DECAY_SECONDS	=	"DECAY-SECONDS"; 	A	global	constant.	This	can	be	used	by	the
ScoreReader 	to	reduce	the	number	of	“magic”	strings.
const	std::string	SUSTAIN_AMPLITUDE	=	"SUSTAIN-AMPLITUDE"; 	A	global	constant.	This	can	be	used	by	the
ScoreReader 	to	reduce	the	number	of	“magic”	strings.
const	std::string	RELEASE_SECONDS	=	"RELEASE-SECONDS";

Update	 library-score/MusicalScore.{h,cpp}
We	will	add	to	the	 MusicalScore 	class	by	adding	the	 Envelopes 	collection.	Future	assignments	will	add	more
to	the	class.

MusicalScore 	Class
This	class	will	store	all	of	the	information	for	a	piece	of	music.

Data	Members:

An	 Envelopes 	collection	object	for	storing	all	envelopes	that	may	be	used	in	the	music.

public 	Methods:

MusicalScore(); 	Allow	the	 Envelopes 	object	to	be	default	constructed.	Should	not	require	any	changes.
Envelopes&	getEnvelopes(); 	Return	the	data	member.
const	Envelopes&	getEnvelopes()	const; 	Return	the	data	member.

Update	 library-score-io/ScoreReader.{h,cpp}
We	will	update	the	 ScoreReader 	class	by	adding	the	ability	to	read	 Envelope 	objects.	Future	assignments	will
add	more	to	the	class.

ScoreReader 	Class
This	class	will	eventually	read	all	of	the	information	for	a	piece	of	music	from	the	 .score 	file	format.

Data	Members:

No	data	members	are	required.

public 	Methods:

void	readScore(std::istream&	input_stream,	MusicalScore&	score)	const; 	Add	the	ability	to	recognize	the
ENVELOPE	keyword,	and	call	 readEnvelope() 	to	read	the	envelope.
std::shared_ptr<Envelope>	readEnvelope(std::istream&	is,	MusicalScore&	score)	const; 	This	method	reads
an	envelope	formatted	with	the	format	described	above.

Update	 library-commands/score_editor_aux.{h,cpp}
Commands	created	for	the	score	editor	program	will	go	here.	We’ll	make	a	few	in	this	assignment,	and	add
more	in	future	assignments.

Functions:
void	readScoreUI(ApplicationData&	app); 	Asks	the	user	for	a	filename	that	holds	a	score.	Opens	the	file.
If	successfully	opened,	uses	a	temporary	 ScoreReader 	object	to	read	the	score	into	the	 ApplicationData
object’s	 MusicalScore .	If	not	opened	successfully,	gives	an	error	message.	See	example	above	for
formatting	details.
void	listScoreEnvelopesUI(ApplicationData&	app); 	Displays	all	of	the	envelopes	currently	stored	in	the
score.	See	example	above	for	formatting	details.
void	addScoreEnvelopeUI(ApplicationData&	app); 	Asks	the	user	for	required	information.	Uses	the	factory
to	create	a	new	envelope.	Based	on	the	type	prompts	the	user	for	additional	information	and	configures



the	envelope	accordingly.	If	the	creation	and	configuration	is	successful,	adds	the	envelope	to	the	score.
Otherwise,	gives	an	error	message.	If	you	have	additional	envelope	types,	please	make	this	method
handle	them	correctly.	See	example	above	for	formatting	details.
void	editScoreEnvelopeUI(ApplicationData&	app); 	Ask	the	user	for	required	information.	If	the	envelope
name	identifies	an	existing	envelope,	prompt	the	user	for	required	information	to	reconfigure	the
envelope,	based	on	its	type.	When	editing	envelope	attributes,	display	the	current	value	of	the	attribute
in	the	prompt.	If	there	is	an	error	with	the	envelope	name,	display	an	error	message.	See	example	above
for	formatting	details.
int	register_score_editor_commands(ApplicationData&	app_data); 	Update	to	also	add	the	new	commands
specified	for	this	assignment.

Additional	Documentation
None

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
TBA


