
CS	3005:	Programming	in	C++
Notes,	Frequencies,	Time	Signatures,	and	Tempos
Introduction
In	this	assignment	you	will	add	a	time	signature	and	a	tempo	to	the	musical	score,	including	the	ability	to
configure	them	from	the	score	editor,	and	read/write	them	in	score	files.

You	will	also	add	a	note	class	and	a	frequency	class	to	support	music	notation.	These	classes	will	be	used
more	in	future	assignments.

A	note	represents	a	musical	note,	including	its	frequency	and	duration.	We	will	specify	the	frequency	by
specifying	the	note	from	a	keyboard,	and	the	octave	it	belongs	to.	We	will	specify	the	duration	by	describing
whole,	half,	quarter,	etc.	notes.

Refer	to	the	class	notes	for	more	discussion	on	octaves,	keys,	frequency	calculations,	duration,	etc.

Syntax	in	the	 .score 	file	for	time	signature	and	tempo
This	format	was	designed	to	be	read	using	the	C++	standard	library’s	 >> 	operator.	All	values	are
whitespace	delimited.	By	context,	your	code	should	be	able	to	determine	whether	the	next	value	is	a
std::string 	or	a	 double .

The	TIME-SIGNATURE	keyword	must	always	be	followed	by	two	integers.

The	TEMPO	keyword	must	always	be	followed	by	one	floating	point	number.

Both	of	these	keywords	will	be	encountered	directly	inside	a	SCORE/SCORE-END	block.

Sample	SCORE	file

SCORE
		TIME-SIGNATURE	3	4
		TEMPO	120

SCORE-END

Notes	on	the	 ScoreReader::readScore 	method
If	the	method	encounters	the	TIME-SIGNATURE	keyword,	it	should	immediately	read	two	integers,	and
use	them	to	configure	the	 TimeSignature 	field	in	the	 MusicalScore 	object.
If	the	method	encounters	the	TEMPO	keyword,	it	should	immediately	a	floating	point	number,	and	use	it
to	configure	the	 Tempo 	field	in	the	 MusicalScore 	object.

Notes	on	the	 ScoreWriter::writeScore 	method
The	TIME-SIGNATURE	and	TEMPO	keywords	are	indented	two	spaces.
Their	values	are	on	the	same	line,	separated	by	spaces.
The	<<	operator	should	be	used	to	send	their	values	to	the	score	stream.
TIME-SIGNATURE	comes	first	and	TEMPO	comes	second.
There	is	a	blank	line	after	the	TEMPO	line.
There	is	not	a	blank	line	after	SCORE.

Assignment
Here	are	the	new	commands	that	are	required	in	the	score	editor	program	for	this	assignment.	Previous
commands	are	still	required.

Command Prefixable? Function Description
score-set-time-signature no setScoreTimeSignatureUI Edit	the	time	signature	of	a	score.
score-set-tempo no setScoreTempoUI Edit	the	tempo	of	a	score.



Example	Session

$	./program-score-editor/score_editor	
Choice?	menu
Options	are:
		#	-	Skip	to	end	of	line	(comment).
		comment	-	Skip	to	end	of	line	(comment).
		echo	-	Echo	back	the	arguments	given.
		help	-	Display	help	message.
		menu	-	Display	help	message.
		quit	-	Terminate	the	program.
		score-add-envelope	-	Add	envelope	to	the	score.
		score-add-instrument	-	Add	instrument	to	the	score.
		score-add-waveform	-	Add	waveform	to	the	score.
		score-edit-envelope	-	Edit	envelope	in	the	score.
		score-edit-instrument	-	Edit	instrument	in	the	score.
		score-edit-waveform	-	Edit	waveform	in	the	score.
		score-list-envelopes	-	List	envelopes	in	the	score.
		score-list-instruments	-	List	instruments	in	the	score.
		score-list-waveforms	-	List	waveforms	in	the	score.
		score-read	-	Read	score	from	file.
		score-set-tempo	-	Edit	the	tempo	of	a	score.
		score-set-time-signature	-	Edit	the	time	signature	of	a	score.
		score-write	-	Write	score	to	score	file.

Choice?	score-set-time-signature
Beats	per	bar:	6
Beat	value:	8
Choice?	score-set-tempo
Beats	per	minute:	123.4
Choice?	score-write
Filename:	demo.score
Choice?	quit

The	output	file:	demo.score.

Programming	Requirements
Create	 library-score/TimeSignature.{h,cpp}
TimeSignature 	Class
This	class	will	represent	a	time	signature.	That	is	the	number	of	beats	in	a	bar	and	the	duration	of	a	beat.

protected 	Data	Members:

An	 int 	the	beats	per	bar.
An	 int 	the	value	of	a	beat.

public 	Methods:

TimeSignature(); 	Configures	the	default	time	signature	to	4 ⁄4.
TimeSignature(const	int	beats_per_bar,	const	int	beat_value); 	Configures	the	time	signature	to
beats_per_bar 	beats	in	a	bar	and	 beat_value 	beats	in	a	beat.
int	getBeatsPerBar()	const; 	Returns	the	number	of	beats	in	a	bar.
int	getBeatValue()	const; 	Returns	the	beat	value.
void	setBeatsPerBar(const	int	beats_per_bar); 	Sets	the	number	of	beats	in	a	bar,	but	only	if
beats_per_bar 	is	at	least	1.
void	setBeatValue(const	int	beat_value); 	Sets	the	beat	value,	but	only	if	 beat_value 	is	at	least	1.

Update	 library-score/MusicalScore.{h,cpp}
We	will	add	to	the	 MusicalScore 	class	by	adding	the	 Instrumentarium 	collection.	Future	assignments	will	add
more	to	the	class.

MusicalScore 	Class

https://www.cs.utahtech.edu/cs/3005/assignments.wav_wizard/assignment_25_note/demo.score


This	class	will	store	all	of	the	information	for	a	piece	of	music.

Data	Members:

Add	these	data	member:

A	 TimeSignature 	object	for	storing	the	music’s	time	signature.
A	 double 	object	for	storing	the	music’s	tempo	(beats	per	minute).

public 	Methods:

MusicalScore(); 	Allow	the	 TimeSignature 	object	to	default	construct.	Initialize	the	tempo	to	100.
MusicalScore(const	TimeSignature&	time_signature,	const	double	tempo); 	Initialize	these	data	members
from	the	parameters.
TimeSignature&	getTimeSignature(); 	Return	the	data	member.
const	TimeSignature&	getTimeSignature()	const; 	Return	the	data	member.
double	getTempo()	const; 	Return	the	data	member.
void	setTempo(const	double	tempo); 	Change	the	data	member,	but	only	if	the	new	tempo	is	>	0.

Update	 library-score-io/ScoreReader.{h,cpp}
We	will	update	the	 ScoreReader 	class	by	adding	the	ability	to	read	time	signatures	and	tempos.

ScoreReader 	Class
This	class	will	eventually	read	all	of	the	information	for	a	piece	of	music	from	the	 .score 	file	format.

Data	Members:

No	data	members	are	required.

public 	Methods:

void	readScore(std::istream&	input_stream,	MusicalScore&	score)	const; 	Add	the	ability	to	recognize	the
TIME-SIGNATURE	and	TEMPO	keywords.	See	the	description	above.

Update	 library-score-io/ScoreWriter.{h,cpp}
We	will	update	the	 ScoreWrite 	class	by	adding	the	ability	to	write	time	signatures	and	tempos.

ScoreWriter 	Class
This	class	will	eventually	write	all	of	the	information	for	a	piece	of	music	from	the	 .score 	file	format.

Data	Members:

No	data	members	are	required.

public 	Methods:

void	writeScore(std::ostream&	output_stream,	const	MusicalScore&	score)	const; 	Add	the	TIME-
SIGNATURE	and	TEMPO	keywords.	See	the	description	above.

Update	 library-commands/score_editor_aux.{h,cpp}
Commands	created	for	the	score	editor	program	will	go	here.	We’re	adding	more	this	assignment.

Functions:
int	register_score_editor_commands(ApplicationData&	app_data); 	Update	to	add	the	new	commands
specified	for	this	assignment.
void	setScoreTimeSignatureUI(ApplicationData&	app); 	Asks	the	user	for	the	values	and	sets	them	in	the



ApplicationData 	object’s	 MusicalScore 	object.	See	the	description	above.
void	setScoreTempoUI(ApplicationData&	app); 	Asks	the	user	for	the	value	and	set	it	in	the	 ApplicationData
object’s	 MusicalScore 	object.	See	the	description	above.

Create	 library-score/Frequency.{h,cpp}
Frequency 	Class
This	class	only	has	static	methods	and	data	members.	Note	that	there	is	only	1	public	method	of	the	class.
The	rest	of	the	methods	are	used	to	pre-calculate	the	frequencies	associated	with	note	names.	The	public
method	looks	up	the	frequency	using	the	name.

protected 	Data	Members:

static	double	trt; 	The	twelfth	root	of	two.	The	data	member	must	be	called	exactly	 trt .
static	std::map<std::string,	double>	smFrequencies; 	A	map	from	note	names	(like	“C4”)	to	frequencies.
Initialized	in	the	implementation	file	by	the	return	value	of	 generateFrequencies() .

public 	Methods:

static	double	getFrequency(const	std::string&	note); 	If	 note 	is	a	key	in	the	map,	return	the	associated
frequency.	If	not,	then	return	0.0.

protected 	Methods:

static	double	computeFactor(const	unsigned	int&	octaves,	const	unsigned	int&	keys); 	Returns	the	scaling
factor	to	move	a	frequency	by	 octave 	octaves	and	 keys 	positions	within	an	octave.	Under	normal
operation	 octave 	should	be	at	least	0	and	no	more	than	9	and	 keys 	should	be	at	least	0	and	no	more
than	11.	Your	code	does	not	need	to	check	this.	The	scaling	factor	is	computed	as	2	raised	to	the	power
of	 octave 	times	the	twelfth	root	of	two	to	the	power	of	 keys .	You	should	use	the	 std::pow 	function	from
<cmath> 	to	accomplish	this.
static	double	moveLeft(const	double&	frequency,	const	unsigned	int&	octaves,	const	unsigned	int&	keys);
To	move	left,	we	divide	a	frequency	by	the	factor	computed	by	 computeFactor() .
static	double	moveRight(const	double&	frequency,	const	unsigned	int&	octaves,	const	unsigned	int&
keys); 	To	move	right,	we	multiply	a	frequency	by	the	factor	computed	by	 computeFactor() .
static	std::map<std::string,	double>	generateFrequencies(); 	Generates	all	of	the	frequencies	from	C0	to
B9,	including	all	sharps	and	flats.	For	each,	stores	the	note	in	the	map	with	its	associated	frequency.
Each	octave	has	the	note	names:	“C”,	“C#”,	“Db”,	“D”,	“D#”,	“Eb”,	“E”,	“F”,	“F#”,	“Gb”,	“G”,	“G#”,
“Ab”,	“A”,	“A#”,	“Bb”,	“B”.	Note	that	neighboring	sharp	and	flat	notes	are	different	names	for	the	same
frequency.	Octaves	0	through	9	must	be	computed	and	stored.	Use	this	process:	A4	has	frequency	440.0.
C0	is	computed	from	moving	A4	left	the	correct	number	of	octaves	and	positions.	All	other	notes	are
computed	by	moving	C0	right	the	correct	number	of	octaves	and	positions.

Create	 library-score/Note.{h,cpp}
global 	Constants

constexpr	double	SIXTEENTH_NOTE	=	0.125/2.0;
constexpr	double	EIGHTH_NOTE	=	0.125;
constexpr	double	QUARTER_NOTE	=	0.25;
constexpr	double	HALF_NOTE	=	0.50;
constexpr	double	WHOLE_NOTE	=	1.00;

Note 	Class
Stores	and	manages	a	note’s	name	and	duration.	Names	are	in	the	format	“C#5”,	a	key	followed	by	the
octave.	Durations	are	stored	in	fractions	of	a	whole	note.

Data	Members:

Data	members	must	be	 protected 	or	 private .	 public 	data	members	are	not	allowed.

A	 std::string 	for	the	name	of	the	note.



A	 double 	for	the	duration	of	the	note	in	whole	notes.

public 	Methods:

Note(); 	Initializes	the	name	to	“”	and	the	duration	to	0.
Note(const	std::string&	full_note); 	Initializes	the	name	to	“”	and	the	duration	to	0.,	then	uses	the	 set
method	to	configure	the	name	and	duration	from	the	input	string.
Note(const	std::string&	name,	const	double&	duration); 	Initializes	the	name	and	duration	from	the
parameters.
Note(const	std::string&	name,	const	std::string&	duration_str); 	Initializes	the	name	from	the
parameter,	and	the	duration	to	0.	Then	uses	the	 setDuration 	method	to	configure	the	duration	from	the
parameter.
const	std::string&	getName()	const; 	Returns	the	data	member.
const	double&	getDuration()	const; 	Returns	the	data	member.
double	getFrequency()	const; 	Uses	the	 Frequency 	class	to	lookup	the	numeric	frequency	from	the	name
and	returns	it.	If	the	name	is	not	found	by	the	 Frequency 	class,	returns	0.
void	setName(const	std::string&	name); 	If	the	 Frequency 	class	recognizes	the	 name ,	then	sets	the	name.
Otherwise	does	nothing.
void	setDuration(const	double	duration); 	If	the	duration	is	positive,	sets	the	duration.	Otherwise	does
nothing.
void	setDuration(const	std::string&	duration_str); 	If	the	duration	is	and	of	the	strings	 w,h,q,e,s ,	then
sets	the	duration	from	the	respective	constant.	Otherwise	does	nothing.	If	the	duration	string	has	length
2,	and	the	second	character	is	 . ,	then	sets	the	duration	to	be	1.5	time	the	duration	specified	by	the
letter.	If	the	second	character	is	 t ,	then	sets	the	duration	to	1 ⁄3	of	the	duration	specified	by	the	letter.
If	the	second	character	is	anything	else,	then	does	nothing.	If	the	duration	string	is	longer	than	2,	does
nothing.
void	set(const	std::string&	full_note); 	Uses	 splitString 	to	split	the	full	note	string	into	parts,	then
uses	 setName 	and	 setDuration 	to	configure	the	data	members.

protected 	Methods:

void	splitString(const	std::string&	full_note,	std::string&	name,	std::string&	duration); 	Splits	the
full_note 	string	into	 name 	and	 duration 	string.	The	duration	will	be	the	first	1	or	2	characters,	and	the
name	will	be	the	rest	of	the	string.	The	duration	is	length	2	of	the	second	character	is	 t 	or	 . ,
otherwise	its	length	is	1.

Free	Functions

std::ostream&	operator<<(std::ostream&	output_stream,	const	Note&	note); 	This	function	displays	a	note
to	the	output	stream	in	the	format:	“duration-as-a-double	name-as-a-string(frequency-as-a-double)”.	For
example	“0.25	A4(440.0)”	is	a	quarter	note	in	the	A4	key.

Additional	Documentation

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
TBA


