
CS	3005:	Programming	in	C++
PPM	Menu
The	previous	assignments	have	built	up	several	functions	that	allow	the	ability	to	read	 PPM 	images	from
files,	modify	the	images,	and	write	images	to	files.

This	assignment	will	create	an	application	with	a	menu	based	interface	that	allows	users	to	select	actions	on
PPM 	objects.	It	will	combine	the	previous	work	with	a	few	new	functions	to	make	a	text	based	image	editing
program.

Assignment
In	this	assignment,	you	will	add	a	new	program	to	the	project.	This	program	will	have	the	image	editing
capabilities	mentioned	above.

It	is	expected	that	all	previous	programs	will	still	work	unchanged.

Programming	Requirements
Now	that	you	have	the	 ActionData 	and	 MenuData 	classes,	most	functions	will	need	to	be	updated	as	noted
below.	For	each	function,	update	the	parameter	list	to	match	the	list	shown	below.	Be	sure	to	do	this	in	the
header	file	as	well	as	the	implementation	file.	After	updating	the	parameter	list,	edit	the	rest	of	the	function
to	use	the	 ActionData 	object	instead	of	the	previous	parameters.	For	example	use	 action_data.getIS() 	where
you	used	to	use	 is .	A	similar	substitution	will	be	needed	to	replace	 os .	See	the	Additional	Documentation
section	below	for	an	example.

The	following	files	must	be	updated	or	created	and	stored	in	the	 src 	directory	of	your	repository.

Update	 user_io.cpp 	and	 image_menu.h
Update	these	functions:

std::string	getString(ActionData&	action_data,	const	std::string&	prompt); 	Make	the	substitutions
described.
int	getInteger(ActionData&	action_data,	const	std::string&	prompt); 	Make	the	substitutions
described.
double	getDouble(ActionData&	action_data,	const	std::string&	prompt); 	Make	the	substitutions
described.
int	askQuestions3(ActionData&	action_data) 	Make	the	substitutions	described.
Any	similar	Exam	1	functions

Add	these	functions:

std::string	getChoice(ActionData&	action_data); 	Uses	 getString 	to	ask	the	user	for	a	string,	using
“Choice?	”	as	the	prompt.	Returns	the	value	returned	by	 getString() .
void	commentLine(ActionData&	action_data); 	Uses	 .read() 	to	read	a	single	character	at	a	time	from	the
input	stream.	If	the	input	stream	is	 .good() 	after	the	read,	and	if	the	character	read	is	not	the	newline
character,	repeat.	Otherwise	return.	In	other	words,	read	from	the	input	stream	until	the	input	stream
has	nothing	to	read,	or	a	newline	character	is	read.	Do	not	do	anything	with	the	characters	read.
void	quit(ActionData&	action_data); 	Set	the	 ActionData 	object	to	be	done.

Update	 image_drawing.cpp 	and	 image_menu.h
Update	these	functions:

void	diagonalQuadPattern(ActionData&	action_data) 	Make	the	substitutions	described.	Since	the	 Image
parameter	has	been	removed,	use	 action_data.getInputImage1() 	where	you	would	have	used	the	 image
parameter.	For	example,	 action_data.getInputImage1().setHeight(height) .	Set	the	maximum	color	value
to	255.	(This	was	not	necessary	previously,	because	this	function	worked	on	an	 Image ,	which	do	not
have	maximum	color	values.)
void	stripedDiagonalPattern(ActionData&	action_data) 	Make	the	substitutions	described.	Since	the	 PPM
parameter	has	been	removed,	use	 action_data.getInputImage1() 	where	you	would	have	used	the	 ppm
parameter.	For	example,	 action_data.getInputImage1().setHeight(height) .
Any	similar	Exam	1	functions

Add	these	functions:

void	setSize(ActionData&	action_data); 	Use	 getInteger 	to	ask	the	user	for	the	“Height?	”	and	“Width?
“,	and	set	the	height	and	width	of	the	input	image	1.
void	setMaxColorValue(ActionData&	action_data); 	Use	 getInteger 	to	ask	the	user	for	the	“Max	color
value?	”	and	set	the	maximum	color	value	of	the	input	image	1.
void	setChannel(ActionData&	action_data); 	Use	 getInteger 	to	ask	the	user	for	“Row?	“,	“Column?	“,
“Channel?	“,	and	“Value?	“,	then	the	set	the	channel	value	in	input	image	1.
void	setPixel(ActionData&	action_data); 	Use	 getInteger 	to	ask	the	user	for	“Row?	“,	“Column?	“,
“Red?	“,	“Green?	“,	and	“Blue?	“,	then	the	set	the	values	in	input	image	1.
void	clearAll(ActionData&	action_data); 	Set	all	pixels	in	input	image	1	to	have	the	color	(0,0,0).

Update	 image_output.cpp 	and	 image_menu.h
Update	these	functions:

void	drawAsciiImage(ActionData&	action_data) 	Make	the	substitutions	described.	Since	the	 Image
parameter	has	been	removed,	use	 action_data.getOutputImage() 	where	you	would	have	used	the	 image
parameter.	For	example,	 action_data.getOutputImage().getHeight() .
writeUserImage(ActionData&	action_data) 	Make	the	substitutions	described.	Since	the	 PPM 	parameter
has	been	removed,	use	 action_data.getOutputImage() 	where	you	would	have	used	the	 ppm 	parameter.	For
example,	 action_data.getOutputImage().writeStream(fout) .
Any	similar	Exam	1	functions

Add	these	functions:

void	copyImage(ActionData&	action_data); 	Sets	the	output	image	to	be	equal	to	the	input	image	1.
Literally,	the	body	contains:	 action_data.getOutputImage()	=	action_data.getInputImage1(); .	That’s	it.
void	readUserImage1(ActionData&	action_data); 	Uses	 getString 	to	ask	the	user	for	the	name	of	an
existing	PPM	file	to	be	read,	using	“Input	filename?	”	as	the	prompt.	Opens	the	file	as	an	 std::ifstream ,
then	uses	 readStream() 	to	read	the	file	into	the	input	image	1.	If	the	file	does	not	open	correctly,	report
to	the	that	the	file	could	not	be	opened.	For	example,	if	the	file	was	named	“foo.ppm”,	then	the	message
should	be	“‘foo.ppm’	could	not	be	opened.”

Update	 controllers.cpp 	and	 image_menu.h
In	each	of	the	 assignment*() 	functions	create	an	 ActionData 	object	passing	 is 	and	 os 	to	its	constructor.
Then,	update	all	of	the	function	calls	in	to	pass	the	 ActionData 	object	as	appropriate.	If	the	function	calls	a
function	that	modifies	input	image	1,	then	calls	another	that	reads	output	image,	copy	the	input	image	1	to
the	output	image	between	those	calls.	See	the	examples	from	the	Additional	Documentation	section.

Update	these	functions:

int	assignment1(std::istream&	is,	std::ostream&	os)
int	assignment2(std::istream&	is,	std::ostream&	os) 	Copy	input	image	1	to	output	image	between
drawing	and	output.
int	assignment3(std::istream&	is,	std::ostream&	os) 	Copy	input	image	1	to	output	image	between
drawing	and	output.
Any	similar	Exam	1	functions.

Add	these	functions,	they	will	support	the	menu	driven	application	for	editing	images.	They	include
imageMenu() 	the	main	loop	that	controls	the	new	application.

void	showMenu(MenuData&	menu_data,	ActionData&	action_data); 	For	each	command	that	was	added	to
MenuData 	via	 addAction() ,	displays	one	line	of	text	to	the	output	stream	of	the	 ActionData .	The	lines	are
formatted	like	this:	“command-name)	command	description”.	See	the	ShowMenu()	example	below.
void	takeAction(const	std::string&	choice,	MenuData&	menu_data,	ActionData&	action_data); 	Uses	 choice
as	a	command	name	to	get	a	 ActionFunctionType 	from	the	 MenuData .	If	the	function	returned	is	not	 0 ,
then	call	the	returned	function,	passing	the	 ActionData 	as	its	parameter.	Otherwise,	if	the	choice	was
“menu”,	call	 showMenu .	Otherwise	(if	the	function	was	 0 	and	 choice 	was	not	“menu”),	display	a	message
with	the	format:	“Unknown	action	‘bad-choice’.”,	where	 bad-choice 	should	be	the	 choice .
void	configureMenu(MenuData&	menu_data); 	Calls	 addAction 	on	the	 MenuData 	object	to	add	the	commands
listed	below	in	the	Table	of	Commands,	their	functions,	and	their	descriptions.
int	imageMenu(std::istream&	is,	std::ostream&	os); 	Creates	an	 ActionData 	object	with	 is 	and	 os 	used
for	its	input	and	output	streams.	Creates	a	 MenuData 	object.	Uses	 configureMenu 	to	configure	the
commands	in	the	 MenuData 	object.	Uses	a	loop	that	will	continue	as	long	as	the	 ActionData 	object	is	not
“done”	and	the	 ActionData 	object’s	input	stream	is	 .good() .	The	body	of	the	loop	will	use	 getChoice 	to
get	the	user’s	command	choice,	and	 takeAction 	to	execute	the	user’s	command	choice.	Returns	 0 .

Table	of	Commands

Command	Name Function	Name Description
draw-ascii drawAsciiImage “Write	output	image	to	terminal	as	ASCII	art.”
write writeUserImage “Write	output	image	to	file.”
copy copyImage “Copy	input	image	1	to	output	image.”
read1 readUserImage1 “Read	file	into	input	image	1.”
# commentLine “Comment	to	end	of	line.”
size setSize “Set	the	size	of	input	image	1.”
max-color-value setMaxColorValue “Set	the	max	color	value	of	input	image	1.”
channel setChannel “Set	a	channel	value	in	input	image	1.”
pixel setPixel “Set	a	pixel’s	3	values	in	input	image	1.”
clear clearAll “Set	all	pixels	to	0,0,0	in	input	image	1.”
quit quit “Quit.”

ShowMenu() 	Example
If	the	following	actions	have	been	added	to	the	 MenuData 	via	 addAction() :

menu_data.addAction("a",	a_one_function,	"A-One");
menu_data.addAction("b",	balsamic_function,	"Balsamic");
menu_data.addAction("c",	chipotle_function,	"Chipotle");
menu_data.addAction("d",	dijon_function,	"Dijon");

then	the	expected	output	would	look	like	this:

a)	A-One
b)	Balsamic
c)	Chipotle
d)	Dijon

Create	 ppm_menu.cpp
This	file	must	include	the	implementations	of	the	following	functions:

int	main(); 	This	function	should	call	 imageMenu ,	passing	in	 std::cin 	and	 std::cout 	as	the	input	and
output	streams	to	use.	This	function	should	return	what	 imageMenu 	returns.

Update	 Makefile
This	file	must	now	also	include	the	rules	to	build	the	program	 ppm_menu .	The	following	commands	should
work	correctly.

make	hello 	-	builds	the	hello	program
make	questions_3 	-	builds	the	questions_3	program
make	ascii_image 	-	builds	the	ascii_image	program
make	image_file 	-	builds	the	image_file	program
make	ppm_menu 	-	builds	the	ppm_menu	program
make 	-	builds	all	programs

Additional	Documentation
C++	Reference
Examples	from	class
Windows	PPM	Viewer
Linux	PPM	Viewer:	 eog	file.ppm
ActionData 	Examples

Show	Off	Your	Work
To	receive	credit	for	this	assignment,	you	must

use	git	to	add,	commit	and	push	your	solution	to	your	repository	for	this	class.

http://www.cplusplus.com/
http://computing.utahtech.edu/cs/3005/examples.php
https://www.irfanview.com/
https://www.cs.utahtech.edu/cs/3005/assignments/assignment_05_ppm_menu/action_data_example.php

successfully	pass	all	unit	tests	and	acceptance	tests

Additionally,	the	programs	must	build,	run	and	give	correct	output.

