
CS	3005:	Programming	in	C++
Mandelbrot	Set
Introduction
The	Mandelbrot	set	is	a	mathematical	set	defined	from	a	function,	similar	to	and	related	to	the	Julia	set.
However,	the	Mandelbrot	set	is	more	widely	know.

Finding	Points	in	the	Mandelbrot	Set
For	our	purposes,	this	is	a	good	enough	definition	of	the	Mandelbrot	set	for	a	function	(x’,	y’)	=	f(x,	y,	a,	b),
where	(x,	y),	(a,	b)	and	(x’,	y’)	are	the	coordinates	of	points	in	the	2	dimensional	plane.

Take	a	point	(a,	b).	Using	x0	=	0,	y0	=	0,	a,	and	b	as	input	to	f(x,	y,	a,	b),	we	receive	a	new	point	from	the
function.

x1,	y1	=	f(x0,	y0,	a,	b)

Repeat	that	process	by	using	the	output	of	the	previous	call	of	the	function	as	the	input	to	the	current	call.
We	could	repeat	up	to	 n 	times:

x2,	y2	=	f(x1,	y1,	a,	b)
x3,	y3	=	f(x2,	y2,	a,	b)
x4,	y4	=	f(x3,	y3,	a,	b)
...
xn-1,	yn-1	=	f(xn-2,	yn-2,	a,	b)
xn,	yn	=	f(xn-1,	yn-1,	a,	b)

For	large	enough	values	of	n,	the	resulting	point	at	xn,	yn	will	fall	into	one	of	two	categories:

1-	The	point	will	still	be	close	to	the	origin	(0,0)	of	the	plane.	We	define	close	to	mean	a	distance	less	than	or
equal	to	2.

2-	The	point	will	be	far	from	the	origin.	We	define	far	to	mean	a	distance	greater	than	2.

If	the	point	is	close	to	the	origin,	it	is	part	of	the	Mandelbrot	set	for	f(x,y,a,b).	Otherwise	it	is	not	part	of	the
Mandelbrot	set.	A	point	that	is	not	part	of	the	Mandelbrot	set	“escapes”	at	the	first	iteration	where	the	new
(x,y)	point	is	a	distance	of	more	than	2	from	the	origin.	For	points	that	escape,	we	will	want	to	remember	the
“escape	count”,	or	which	iteration	it	escaped.

From	Functions	to	Images
So,	where	do	the	interesting	pictures	come	from?

We	choose	an	actual	function	for	 f(x,y,a,b) ,	then	color	each	point	in	the	plane	based	on	how	far	it	is	from
being	in	the	Mandelbrot	set	for	the	selected	function.	“How	far”	is	the	“escape	count”.

Actually,	there	are	infinitely	many	points	in	the	plane,	so	we	can’t	do	every	point.	Instead,	we	select	a
regular	grid	of	points	each	representing	the	points	near	it	in	the	plane.	For	each	point	in	the	grid:

Calculate	its	 a,b 	value,	from	its	position	in	the	grid.
Use	x0	=	0	and	y0	=	0.
Iterate	the	application	of	 f(x,y,a,b) 	up	to	 n 	times.
If	the	result	becomes	far	away,	remember	the	iteration	number	when	it	first	escaped	(became	far	away
from	the	origin).	We	call	this	the	“escape	value”.	Points	with	lower	escape	values	are	further	from	the
Mandelbrot	set	than	those	with	higher	escape	values.
If	the	result	doesn’t	become	far	away	(escape)	within	 n 	iterations,	assume	it	did	not	escape	and
remember	 n 	as	the	escape	value.	These	points	are	assumed	to	be	part	of	the	Mandelbrot	set	for
f(x,y,a,b) .

Now,	we	have	a	set	of	integers	(the	escape	values)	that	represent	how	close	each	of	the	points	in	the	grid
are	to	the	Mandelbrot	set	for	 f(x,y,a,b) .	Larger	numbers	mean	they	are	closer	to	the	Mandelbrot	set.

Since	the	points	selected	are	in	a	regular	grid,	we	can	pair	each	grid	point	with	a	pixel	in	a	rectangular
image.	We	assign	the	color	of	pixel	based	on	the	escape	value	of	the	corresponding	grid	point.	All	pixels

associated	with	the	same	escape	value	will	have	the	same	color.

Defining	a	Regular	Grid
See	the	description	in	the	Julia	set	assignment.

Our	Function	f(x,y,a,b)
For	our	function	 f(x,y,a,b) 	we	will	use	this	definition:

x'	=	x*x	-	y*y	+	a
y'	=	2*x*y	+	b

where,	 a 	and	 b 	are	the	coordinates	of	the	original	point	in	the	plane.	Note	this	is	similar	to,	but	different
from	the	Julia	set,	where	 a 	and	 b 	where	fixed	values	for	an	entire	image	calculation.	Here,	they	depend	on
the	point	whose	escape	count	you	are	calculating.

Assignment
In	this	assignment	you	will	create	a	class	to	calculate	and	store	a	Mandelbrot	set’s	escape	values.	Most	of
the	work	has	already	been	done	in	the	 NumberGrid 	and	 ComplexFractal 	classes.	In	this	assignment,	you	will
create	a	new	class	 MandelbrotSet 	class,	inheriting	from	 ComplexFractal 	and	adding	a	few	methods	specific	to
the	calculation	of	Mandelbrot	sets.

You	will	also	extend	the	 ppm_menu 	program	to	add	a	few	new	commands.

The	new	commands	required	are:

mandelbrot :	Choose	to	make	a	Mandelbrot	set.

Programming	Requirements
The	following	files	must	be	updated	or	created	and	stored	in	the	 src 	directory	of	your	repository.

Create	 MandelbrotSet.{h,cpp}
These	files	will	be	used	to	declare	and	define	the	 MandelbrotSet 	class.

No	data	members	are	required.	Note	that	the	 NumberGrid ’s	maximum	number	will	be	used	for	the
MandelbrotSet ’s	maximum	escape	count.	Also	note	that	 MandelbrotSet 	inherits	from	 ComplexFractal .

Methods:

MandelbrotSet(); 	The	default	constructor,	chain	constructs	via	the	 ComplexFractal 	default	constructor.
MandelbrotSet(const	int&	height,	const	int&	width,	const	double&	min_x,	const	double&	max_x,	const
double&	min_y,	const	double&	max_y); 	Passes	arguments	on	to	the	 ComplexFractal 	constructor.
virtual	~MandelbrotSet(); 	Does	nothing,	empty	code	block.
virtual	void	calculateNextPoint(const	double	x0,	const	double	y0,	const	double&	a,	const	double&	b,
double&	x1,	double	&y1)	const; 	Calculates	 x1 	and	 y1 	using	the	function	described	above	for	the
Mandelbrot	set.
int	calculatePlaneEscapeCount(const	double&	a,	const	double&	b)	const; 	Uses	 calculateNextPoint 	to
find	the	escape	count	for	the	point	at	(a , b).	The	first	iteration	from	x,y	=	0,0	to	x,y	=	a,b	doesn’t	count
as	an	iteration.
virtual	int	calculateNumber(const	int&	row,	const	int&	column)	const; 	Uses	other	methods	to	find	the
plane	coordinate	of	the	pixel	at	 row ,	 column 	and	to	calculate	the	escape	count.	Returns	the	count.	If
row ,	 column 	isn’t	valid,	then	returns	 -1 .

Update/Add	Functions	in	 image_menu.h 	and	 controllers.cpp
Add	or	update	the	following	function	declarations	to	the	header	file	and	implementations	to	the	 .cpp 	file.

void	setMandelbrotFractal(ActionData&	action_data); 	Use	 setGrid() 	to	set	 action_data ’s	grid	to	a
MandelbrotSet 	object	allocated	from	the	heap.
void	configureMenu(MenuData&	menu_data) 	add	the	new	actions	with	the	names	and	descriptions	listed
below.

Table	of	New	Commands

Command	Name Function	Name Description
mandelbrot setMandelbrotFractal Choose	to	make	a	Mandelbrot	set.

Update	 Makefile
The	following	commands	should	work	correctly.

make	hello 	-	builds	the	hello	program
make	questions_3 	-	builds	the	questions_3	program
make	ascii_image 	-	builds	the	ascii_image	program
make	image_file 	-	builds	the	image_file	program
make	ppm_menu 	-	builds	the	image_file	program
make	all 	-	builds	all	programs
make 	-	builds	all	programs	(same	as	 make	all)
make	clean 	-	removes	all	.o	files,	and	all	executable	programs

Additional	Documentation
C++	Reference
Examples	from	class
Sample	Session	Input	File
Julia	set	on	Wikipedia
Mandelbrot	set	on	Wikipedia

Sample	PPM	Images
Sample	Output1
Sample	Output2
Sample	Output3

Show	Off	Your	Work
To	receive	credit	for	this	assignment,	you	must

use	git	to	add,	commit	and	push	your	solution	to	your	repository	for	this	class.
successfully	pass	all	unit	tests	and	acceptance	tests

Additionally,	the	program	must	build,	run	and	give	correct	output.

Extra	Challenges	(Not	Required)
Create	classes	that	inherit	from	 MandelbrotSet 	that	have	different	 calculateNumber() 	functions	for
calculating	values.	Add	the	ability	to	use	them	from	the	 imageMenu() .
Try	other	ways	to	modify	the	plane	and	parameters	that	would	make	it	easier	to	create	interesting
images.

http://www.cplusplus.com/
http://computing.utahtech.edu/cs/3005/examples.php
https://www.cs.utahtech.edu/cs/3005/assignments/assignment_12_mandelbrot_set/ppm_menu_assignment_09_sample_session_mandelbrot.txt
https://en.wikipedia.org/wiki/Julia_set
https://en.wikipedia.org/wiki/Mandelbrot_set
https://www.cs.utahtech.edu/cs/3005/assignments/assignment_12_mandelbrot_set/images/sample-mandelbrot-image-1.ppm
https://www.cs.utahtech.edu/cs/3005/assignments/assignment_12_mandelbrot_set/images/sample-mandelbrot-image-2.ppm
https://www.cs.utahtech.edu/cs/3005/assignments/assignment_12_mandelbrot_set/images/sample-mandelbrot-image-3.ppm

