
Distributed Systems
Introduction and Overview

Utah Tech University—Department of Computing

Spring 2024

(UT) CS 3410 Spring 2024 1 / 15

Introduction Introduction

Overview

What is a distributed system?

Mostly an academic subject until the late 90s, now a standard part of building software
Mobile, web, and desktop apps
Servers
3-tier apps, peer-to-peer, client-server, cluster

“A distributed system is one in which the failure of a computer you didn’t even know existed can render your own
computer unusable” - Leslie Lamport

What makes distributed systems interesting?

(UT) CS 3410 Spring 2024 2 / 15

Introduction Introduction

The Two Generals’ Problem

Two generals are planning an attack on a city. They communicate by sending messengers who may be captured or delayed.
How can they reach agreement on the time to attack?

General A General B
--- ---

/ \ / \
/ \ / \

___ Enemy __/ \

(UT) CS 3410 Spring 2024 3 / 15

Introduction Introduction

RPC

A standard way of communicating between nodes is to use Remote Procedure Calls (RPC), which emulate regular procedure
calls across the network

result = getAccount(node, user)
| __
+--> getAccount client stub: .-,(),-.

* serialize arguments .-()-.
* send network message to node-->(network)--> getAccount server stub:

'-(),-' * deserialize arguments
'-.().-' * call real function

|
+----> result = getAccount(user)

|
|
|

__ * serialize results <---------+
.-,(),-. * send network message back

.-()-. |
* deserialize results <----------(network) <----+
* return from client stub '-(),-'

| '-.().-'
result = ... <--+

(UT) CS 3410 Spring 2024 4 / 15

Introduction Introduction

Distributed systems

Distributed systems are different from single-node systems in a few important ways. Consider the differences between an RPC
and a regular function call:

Latency
Data centers?
Across the world?
How much for local calls?
Can’t we just wait for the network to get faster?
Case study: SQLite vs client-server databases
Requires rethinking call graph, but hard to miss and easy to plan for

(UT) CS 3410 Spring 2024 5 / 15

Introduction Introduction

Distributed systems

Distributed systems are different from single-node systems in a few important ways. Consider the differences between an RPC
and a regular function call:

Memory access
What does a pointer mean?
Why do we use pointers?

Efficiency (less copying)
Shared data structures (shared changes)
Recursive data structures (trees, graphs, loops)

Can we just make copies?
Concurrency
What about file handles, locks, etc.?

Requires rethinking data flow, but hard to ignore

(UT) CS 3410 Spring 2024 6 / 15

Introduction Introduction

Distributed systems

Distributed systems are different from single-node systems in a few important ways. Consider the differences between an RPC
and a regular function call:

Partial failure and concurrency
Fundamentally different from fail-stop model
Consider each step that can fail in a simple RPC

Do we know if it failed?
Is it just slow?

We often choose a distributed system for fault tolerance and availability
The defining problem of distributed systems

Easy to miss, hard to think about
Requires rethinking every part of the system
For many architectures, you must start with the distributed systems problems and then fill in everything else

(UT) CS 3410 Spring 2024 7 / 15

Introduction Administrivia

Attendance, distractions, etc.

Attendance is not required in that you will not be graded for being here
Exception: excessive absense without making arrangements will result in failing (see the syllabus)

You are responsible for what we talk about in class, and much of what we cover will not be available elsewhere
Assignment instructions, tips, etc.
If you miss class, you may not be able to complete the homework

I will try to record classes occasionally on request, but the AV system is flaky and will probably fail on some days
Use recordings for review; do not depend on them

You are expected to take notes: bring pen and paper
Laptops and mobile devices are not allowed in class unless specifically called for

Not even for notes or following along with demos
Exceptions need documentation

Make-up policy for projects
no make-up for Go basics: DO NOT FALL BEHIND
no make-up for readings: must read and participate in discussions

(UT) CS 3410 Spring 2024 8 / 15

Introduction Administrivia

CodeGrinder

You should have a Linux (including WSL) or Mac OS environment to work on

We will use CodeGrinder for autograding many assignments, especially early ones
I recommend installing Debian 11 (Bullseye) if using WSL
First steps: install CodeGrinder and Go

(UT) CS 3410 Spring 2024 9 / 15

Introduction Administrivia

Learning Go

We will spend the first few weeks doing Go practice exercises

Philosophy:

To learn a language, you need practice
You need to practice every day (sleep between)
A bunch of short sessions is better than a long session

Plan to complete one CodeGrinder exercise every single day (except weekends). Each exercise is 2 or 3 problems.

We will still only touch on many important parts of the language. I recommend a book:
The Go Programming Language
by Alan Donovan and Brian Kernighan

It costs about $30 and is well worth it. Plan to read a chapter every once in a while to deepen your understanding of a topic.

(UT) CS 3410 Spring 2024 10 / 15

Introduction Administrivia

Reading papers

A major part of this class is reading research papers that focus on real systems

Reading research papers is hard work and takes a long time. Do not underestimate this part.

Papers are due every Wednesday:

I will assign groups and send out discussion questions in advance
We will spend most of Wednesday discussing the paper–come prepared to discuss the entire paper and especially your assigned
questions
No make up for papers—do not forget!

The smart approach: study group before Wednesday to work through the big picture
You will probably learn more from reading and discussing than from anything else we do
Most of the projects will be based on implementing systems we read about (Paxos, Chord, MapReduce)

(UT) CS 3410 Spring 2024 11 / 15

Introduction Go tutorial

Hello, world

To set up Go and vim: see screencast on course page

package main

import "fmt"

func main() {
fmt.Println("Hello, world!")

}

Building and running:

go mod init
go build
go install
go fmt and goimports

(UT) CS 3410 Spring 2024 12 / 15

Introduction Go tutorial

Command-line arguments

// Echo1 prints its command-line arguments
package main

import (
"fmt"
"os"

)

func main() {
var s, sep string
for i := 1; i < len(os.Args); i++ {

s += sep + os.Args[i]
sep = " "

}
fmt.Println(s)

}

(UT) CS 3410 Spring 2024 13 / 15

Introduction Go tutorial

More about for loops

There are a few forms of for loops in Go:

// A C-style "for" loop
for initialization; condition; post {

// zero or more statements
}

// a "while" loop
for condition {

// body
}

// an infinite/"forever" loop
for {

// body
}

(UT) CS 3410 Spring 2024 14 / 15

Introduction Go tutorial

Range

// Echo2 prints its command-line arguments.
package main

import (
"fmt"
"os"

)

func main() {
s, sep := "", ""
for , arg := range os.Args[1:] {

s += sep + arg
sep = " "

}
fmt.Println(s)

}

// variations on declaring variables:

s := ""
var s string
var s = ""
var s string = ""

// this can create a lot of garbage:
//
// set += sep + arg

// a better way: use the standard library
func main() {

fmt.Println(strings.Join(os.Args[1:], " "))
}

(UT) CS 3410 Spring 2024 15 / 15

	Introduction
	Introduction
	Administrivia
	Go tutorial

