Distributed Systems

Introduction and Overview

Utah Tech University—Department of Computing

Spring 2024

©S 3410 Spring 2024 1/15

Introduction Introduction

Overview

What is a distributed system?

@ Mostly an academic subject until the late 90s, now a standard part of building software
@ Mobile, web, and desktop apps
@ Servers
o 3-tier apps, peer-to-peer, client-server, cluster

“A distributed system is one in which the failure of a computer you didn’t even know existed can render your own
computer unusable” - Leslie Lamport

What makes distributed systems interesting?

€S 3410 Spring 2024 2/15

The Two Generals’ Problem

Two generals are planning an attack on a city. They communicate by sending messengers who may be captured or delayed.
How can they reach agreement on the time to attack?

General A General B

\ Enemy __/ \

€S 3410 Spring 2024 3/15

Introduction Introduction

RPC

A standard way of communicating between nodes is to use Remote Procedure Calls (RPC), which emulate regular procedure

calls across the network

result = getAccount(node, user)

+--> getAccount client stub:
* serialize arguments
* send network message to node-->(

* deserialize results <
* return from client stub

result = ... <--+

SO
-()-
network)--> getAccount server stub:
'—(), * deserialize arguments
NGO IE * call real function
|
+----> result = getAccount (user)
|
|
|
__ * serialize results <----————- +
-0),-. * send network message back
-()- |
network) <————+
l_(),_l
ENGRY
CS 3410 Spring 2024 4/15

Introduction Introduction

Distributed systems

Distributed systems are different from single-node systems in a few important ways. Consider the differences between an RPC
and a regular function call:

@ Latency
o Data centers?
o Across the world?
@ How much for local calls?
e Can'’t we just wait for the network to get faster?
o Case study: SQLite vs client-server databases
@ Requires rethinking call graph, but hard to miss and easy to plan for

©S 3410 Spring 2024 5/15

Introduction Introduction

Distributed systems

Distributed systems are different from single-node systems in a few important ways. Consider the differences between an RPC
and a regular function call:

@ Memory access
o What does a pointer mean?
@ Why do we use pointers?
@ Efficiency (less copying)
@ Shared data structures (shared changes)
@ Recursive data structures (trees, graphs, loops)
@ Can we just make copies?
@ Concurrency
@ What about file handles, locks, etc.?
o Requires rethinking data flow, but hard to ignore

©S 3410 Spring 2024 6/15

Introduction Introduction

Distributed systems

Distributed systems are different from single-node systems in a few important ways. Consider the differences between an RPC
and a regular function call:

@ Partial failure and concurrency
e Fundamentally different from fail-stop model
o Consider each step that can fail in a simple RPC
@ Do we know if it failed?
@ s it just slow?
@ We often choose a distributed system for fault tolerance and availability
@ The defining problem of distributed systems
@ Easy to miss, hard to think about
@ Requires rethinking every part of the system
@ For many architectures, you must start with the distributed systems problems and then fill in everything else

€S 3410 Spring 2024 715

Introduction Administrivia

Attendance, distractions, etc.

@ Attendance is not required in that you will not be graded for being here
e Exception: excessive absense without making arrangements will result in failing (see the syllabus)
@ You are responsible for what we talk about in class, and much of what we cover will not be available elsewhere
@ Assignment instructions, tips, etc.
o If you miss class, you may not be able to complete the homework
I will try to record classes occasionally on request, but the AV system is flaky and will probably fail on some days
@ Use recordings for review; do not depend on them
You are expected to take notes: bring pen and paper
Laptops and mobile devices are not allowed in class unless specifically called for
@ Not even for notes or following along with demos
o Exceptions need documentation
@ Make-up policy for projects
@ no make-up for Go basics: DO NOT FALL BEHIND
@ no make-up for readings: must read and participate in discussions

e e

©S 3410 Spring 2024 8/15

CodeGrinder

You should have a Linux (including WSL) or Mac OS environment to work on
@ We will use CodeGrinder for autograding many assignments, especially early ones

@ | recommend installing Debian 11 (Bullseye) if using WSL
@ First steps: install CodeGrinder and Go

Spring 2024

9/15

Learning Go

We will spend the first few weeks doing Go practice exercises
Philosophy:

@ To learn a language, you need practice

@ You need to practice every day (sleep between)

@ A bunch of short sessions is better than a long session

Plan to complete one CodeGrinder exercise every single day (except weekends). Each exercise is 2 or 3 problems.

We will still only touch on many important parts of the language. | recommend a book:
The Go Programming Language
by Alan Donovan and Brian Kernighan

It costs about $30 and is well worth it. Plan to read a chapter every once in a while to deepen your understanding of a topic.

©S 3410 Spring 2024 10/15

Introduction Administrivia

Reading papers

A major part of this class is reading research papers that focus on real systems
Reading research papers is hard work and takes a long time. Do not underestimate this part.
Papers are due every Wednesday:

@ | will assign groups and send out discussion questions in advance
o We will spend most of Wednesday discussing the paper—come prepared to discuss the entire paper and especially your assigned
uestions
° Elo make up for papers—do not forget!
@ The smart approach: study group before Wednesday to work through the big picture
@ You will probably learn more from reading and discussing than from anything else we do
@ Most of the projects will be based on implementing systems we read about (Paxos, Chord, MapReduce)

€S 3410 Spring 2024 11/15

Introduction Go tutorial

Hello, world

To set up Go and vim: see screencast on course page
package main
import "fmt"
func main() {
fmt.Println("Hello, world!")

}
Building and running:

@ go mod init

@ go build

@ go install
@ go fmt and goimports

€S 3410 Spring 2024 12/15

Introduction Go tutorial

Command-line arguments

// Echol prints its command-line arguments
package main

import (
n fmt n
Hog
)

func main() {
var s, sep string

for i := 1; i < len(os.Args); i++ {
s += sep + os.Args[i]
sep =" "

}

fmt.Println(s)

Introduction Go tutorial

More about for loops

There are a few forms of for loops in Go:

// A C-style "for" loop

for initialization; condition; post {
// zero or more statements

¥

// a "while" loop
for condition {

// body
}
// an infinite/"forever" loop
for {
// body
}

©S 3410 Spring 2024 14/15

Introduction Go tutorial

Range
// Echo2 prints its command-line arguments. // variations on declaring variables:
package main
s = "
import (var s string
llfmt“ var s = nn
"os" var s string = ""
)
// this can create a lot of garbage:
func main() { /7
s, sep := "", "" // set += sep + arg
for _, arg := range os.Args[1:] {
s += sep + arg // a better way: use the standard library
sep = " " func main() {
} fmt.Println(strings.Join(os.Args[1:], " "))
fmt.Println(s) }

	Introduction
	Introduction
	Administrivia
	Go tutorial

