
Computational Theory
Introduction and Mathematical Preliminaries

Curtis Larsen

Utah Tech University—Computing

Fall 2024

Adapted from notes by Russ Ross

Adapted from notes by Harry Lewis

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 1 / 65

Introduction Objectives

Introduction to Formal Systems and Computation

Computer Science 3530

Objectives:

▶ What are the fundamental capabilities and limitations of
computers?

▶ Make a theory out of the idea of computation

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 2 / 65

Introduction Objectives

What is “computation”?

“Processing of information based on a finite set of operations or rules.”

▶ Paper + Pencil Arithmetic

121
+ 99

220

▶ Abacus

▶ Slide rule

▶ Calculator w/moving parts (Babbage wheels, Mark I)

▶ Ruler & compass geometry constructions

▶ Digital computers

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 3 / 65

Introduction Objectives

Further computing devices

▶ Programs in Python, C, Java

▶ The Internet and other distributed systems

▶ Cells/DNA?

▶ Human brain?

▶ Quantum computers?

For us computation will be

Processing information by unlimited application
of a finite set of operations or rules

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 4 / 65

Introduction Objectives

What we would like to get past

▶ “This must be hard because I can’t figure out how to do it”

▶ “This must be hard because I can’t figure out how to do it and
neither can anybody else, including a lot of really smart people”

▶ “This method seems to get the right answer on every case I’ve
tried”

▶ “It never crashed while I was testing it”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 5 / 65

Introduction Objectives

What do we want in a “theory”?

▶ Precision
▶ Mathematical, formal

▶ Can prove theorems about computation,
both positive (what can be computed)
and negative (what cannot be computed).

▶ Generality
▶ Technology-independent, applies to the future as well as the

present

▶ Abstraction: ignores inessential details

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 6 / 65

Introduction Objectives

Representing “Information”

▶ Alphabet

Ex: a, b, c, . . . , z

▶ Strings: finite concatenation of alphabet symbols, order matters

Ex: qaz , abbab

ε = empty string (length 0; sometimes e)

▶ Inputs (& outputs) of computations are strings

⇒ we focus on discrete computations

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 7 / 65

Introduction Computational Problems

Computational Problems (i.e., Tasks)

A single question that has infinitely many different instances

▶ PARITY: given a string x , does it have an even number of a ’s?

▶ MAJORITY: given a string x , does it have more a ’s than b’s?

Problems are defined extentionally: a problem is

▶ the set of all instances of the question to which the answer is
positive

▶ the set of all ⟨question, answer⟩ pairs

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 65

Introduction Computational Problems

Computational Problems

Examples of computational problems on numbers

▶ ADDITION: given two numbers x , y , compute x + y

▶ PRIMALITY: given a number x , is x prime?

Examples of computational problems about computer programs

▶ C SYNTAX: given a string of ASCII symbols, does it follow the
syntax rules for the C programming language?

▶ HALTING PROBLEM: given a computer program (say in C),
can it ever get stuck in an infinite loop?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 9 / 65

Introduction Computational Problems

Computational problems from pure and applied
mathematics

▶ DIOPHANTINE EQUATIONS: Given a polynomial equation
(e.g. x 2 + 3xyz − 44z 3 = 0), does it have an integer solution?

▶ TRAVELLING SALESMAN PROBLEM: Given a set of ‘cities’ in the
plane, what is the fastest way to visit them all?

▶ GRAPH 2-COLORING (3-COLORING): Given a set of people, can
they be partitioned into 2 groups so that every pair of people in
each group gets along? (3 groups?)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 10 / 65

Introduction Computational Problems

More examples of computational problems

▶ REGISTER ALLOCATION

▶ MULTIPROCESSOR SCHEDULING

▶ PROTEIN FOLDING

▶ DECODING ERROR-CORRECTING CODES

▶ NEURON TRAINING

▶ AUCTION WINNER

▶ MIN-ENERGY CONFIGURATION OF A GAS

▶ . . .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 11 / 65

Introduction Languages

The (Mathematical) Idea of a Language

Underlying Principle: Whatever can be computed can be written down

▶ Language: any set of strings

▶ “Solving a yes/no computational problem”
⇔ “Determining if a string is in a given language”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 65

Introduction Languages

Examples of Languages

▶ All words in the American Heritage Dictionary :

{a, aah, aardvark , . . . , zyzzva}

Mathematically simple, because it’s finite!

▶ All strings with an even number of a ’s:

{ε, b, bb, aa, aab, aba, baa, . . .}

Note: “ε” denotes the string of length 0—the empty string

Infinite—but simple membership rule

▶ All syntactically correct C programs

(counting space and newline as characters)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 13 / 65

Introduction Automata

Computational Models

What is a computer? First try: a mathematical automaton.

a a r d v · · ·

Finite
Control

Yes
No

We don’t care how the control is implemented—only that it have a
finite number of states and change states based on fixed rules.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 14 / 65

Introduction Automata

Kinds of Automata

Finite Automata

a b a · · ·
⇒ ⇒

Finite
Control

▶ Head scans left to right

▶ Check simple patterns

▶ Finite table lookup

▶ Can’t count without limit
Pushdown Automata

a a b · · ·
⇒ ⇒

Input

Finite
Control

a

b

a

a

Stack

▶ Use stack to count,
balance parentheses

▶ Check many syntax rules

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 15 / 65

Introduction Automata

A model for general-purpose computers

Turing Machines

▷ b a r · · ·
⇔

Finite
Control

▶ Control is still finite

▶ Head moves left and right,
reads, and writes

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 16 / 65

Mathematical Preliminaries

Mathematical Preliminaries

Reading: Sipser, §0.1 and §0.2.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 17 / 65

Mathematical Preliminaries Set Operations

Sets

▶ Sets are defined by their members

A = B means that for every x , x ∈ A iff x ∈ B

Example N = {1, 2, . . .}

▶ Cardinality
Sets can be finite (e.g. {1, 3, 5}) or infinite (e.g. N).

Q: Is {N} finite?

If A is finite (A = {a1, . . . , an} for some n ∈ N), then its
cardinality (or size) |A| is the number of elements in A.

The empty set ∅ has cardinality 0.

Cardinality of infinite sets to be discussed later!

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18 / 65

Mathematical Preliminaries Set Operations

Subsets

▶ A subset is a set whose members are contained in another set.

A ⊆ B means that for every x , x ∈ A → x ∈ B

Example N ⊆ W

Example N ⊂ W

Example {1, 3, 5, ...} ⊂ W

Example {0, 2, 4, 6, ...} ̸⊂ N

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 65

Mathematical Preliminaries Set Operations

Set Operations

∪ union {a, b} ∪ {b, c} = {a, b, c}
∩ intersection {a, b} ∩ {b, c} = {b}
− difference {a, b} − {b, c} = {a}

▶ A and B are disjoint iff A ∩ B = ∅

▶ The power set of S = P(S) = {X |X ⊆ S}

e.g. P({a, b}) = {∅, {a}, {b}, {a, b}}

Q: What is |P(S)|?

▶ The Cartesian product of sets A,B

A× B = {(a, b)|a ∈ A, b ∈ B}

triples,...

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 65

Mathematical Preliminaries Set Operations

Set Operations

∪ union {a, b} ∪ {b, c} = {a, b, c}
∩ intersection {a, b} ∩ {b, c} = {b}
− difference {a, b} − {b, c} = {a}

▶ A and B are disjoint iff A ∩ B = ∅

▶ The power set of S = P(S) = {X |X ⊆ S}

e.g. P({a, b}) = {∅, {a}, {b}, {a, b}}

Q: What is |P(S)|?

▶ The Cartesian product of sets A,B

A× B = {(a, b)|a ∈ A, b ∈ B}

triples,...

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 65

Mathematical Preliminaries Set Operations

Set Operations

∪ union {a, b} ∪ {b, c} = {a, b, c}
∩ intersection {a, b} ∩ {b, c} = {b}
− difference {a, b} − {b, c} = {a}

▶ A and B are disjoint iff A ∩ B = ∅

▶ The power set of S = P(S) = {X |X ⊆ S}

e.g. P({a, b}) = {∅, {a}, {b}, {a, b}}

Q: What is |P(S)|?

▶ The Cartesian product of sets A,B

A× B = {(a, b)|a ∈ A, b ∈ B}

triples,...

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 65

Mathematical Preliminaries Functions

Functions

A function f : S → T maps each element s ∈ S to (exactly one)
element of T , denoted f (s).

For example, f (n) = n2 is a function from Z → W

(Z = all integers)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 65

Mathematical Preliminaries Functions

Special varieties of functions
S

T

1-1:
s1 ̸= s2 ⇒
f (s1) ̸= f (s2)

S

T

Onto:
For every t ∈ T
there is an s ∈ S
such that f (s) = t

S

T

Bijection:
1-1 and onto
“1-1 Correspondence”

Formal definition of cardinality: S has (finite) cardinality n ∈ N
iff there is a bijection f : {1, . . . ,n} → S .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 65

Mathematical Preliminaries Functions

Special varieties of functions
S

T

1-1:
s1 ̸= s2 ⇒
f (s1) ̸= f (s2)

S

T

Onto:
For every t ∈ T
there is an s ∈ S
such that f (s) = t

S

T

Bijection:
1-1 and onto
“1-1 Correspondence”

Formal definition of cardinality: S has (finite) cardinality n ∈ N
iff there is a bijection f : {1, . . . ,n} → S .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 65

Mathematical Preliminaries Binary Relations

Relations

▶ A k -ary relation on S1, . . . ,Sk is a subset of S1 × . . .× Sk

[A function f : S → T corresponds to the relation
{(s, f (s))|s ∈ S} ⊆ S × T .]

▶ A binary relation on S is a subset of S × S

▶ For example, (GWB,GHWB) ∈ Son, where
Son = {(x , y)|x is a son of y}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 65

Mathematical Preliminaries Binary Relations

What is a (directed) graph?

▶ For finite S , a binary relation can be pictured as a “directed graph”:

a b

c d

= {(a, b), (a, c), (b, d), (d , b), (d , d)}

▶ Formally, a directed graph G consists of a finite set V of
vertices (or nodes), and a set of edges E ⊆ V ×V .

▶ NB: Because a relation (or edge set) is a set (of ordered pairs),
there can be only one arrow from one node to another.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 24 / 65

Mathematical Preliminaries Binary Relations

What is a (directed) graph?

▶ For finite S , a binary relation can be pictured as a “directed graph”:

a b

c d

= {(a, b), (a, c), (b, d), (d , b), (d , d)}

▶ Formally, a directed graph G consists of a finite set V of
vertices (or nodes), and a set of edges E ⊆ V ×V .

▶ NB: Because a relation (or edge set) is a set (of ordered pairs),
there can be only one arrow from one node to another.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 24 / 65

Mathematical Preliminaries Binary Relations

What is a (directed) graph?

▶ For finite S , a binary relation can be pictured as a “directed graph”:

a b

c d

= {(a, b), (a, c), (b, d), (d , b), (d , d)}

▶ Formally, a directed graph G consists of a finite set V of
vertices (or nodes), and a set of edges E ⊆ V ×V .

▶ NB: Because a relation (or edge set) is a set (of ordered pairs),
there can be only one arrow from one node to another.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 24 / 65

Mathematical Preliminaries Binary Relations

Properties of Binary Relations

A relation R ⊆ S × S is:

▶ reflexive if a for each a ∈ S

i.e., (a, a) ∈ R for each a ∈ S

▶ symmetric if a b whenever a b

i.e., for any a, b ∈ S , if (a, b) ∈ R then (b, a) ∈ R

▶ transitive if a c whenever
a b and b c

i.e., if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 25 / 65

Mathematical Preliminaries Binary Relations

Check Understanding

▶ Transitive

▶ Not symmetric

▶ Not reflexive

▶ Symmetric

▶ Not reflexive

▶ Not transitive

▶ Reflexive

▶ Symmetric

▶ Not transitive

▶ Reflexive

▶ Transitive

▶ Symmetric

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 65

Mathematical Preliminaries Binary Relations

Check Understanding

▶ Transitive

▶ Not symmetric

▶ Not reflexive

▶ Symmetric

▶ Not reflexive

▶ Not transitive

▶ Reflexive

▶ Symmetric

▶ Not transitive

▶ Reflexive

▶ Transitive

▶ Symmetric

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 65

Mathematical Preliminaries Binary Relations

Check Understanding

▶ Transitive

▶ Not symmetric

▶ Not reflexive

▶ Symmetric

▶ Not reflexive

▶ Not transitive

▶ Reflexive

▶ Symmetric

▶ Not transitive

▶ Reflexive

▶ Transitive

▶ Symmetric

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 65

Mathematical Preliminaries Binary Relations

Check Understanding

▶ Transitive

▶ Not symmetric

▶ Not reflexive

▶ Symmetric

▶ Not reflexive

▶ Not transitive

▶ Reflexive

▶ Symmetric

▶ Not transitive

▶ Reflexive

▶ Transitive

▶ Symmetric

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 65

Mathematical Preliminaries Binary Relations

Check Understanding

▶ Transitive

▶ Not symmetric

▶ Not reflexive

▶ Symmetric

▶ Not reflexive

▶ Not transitive

▶ Reflexive

▶ Symmetric

▶ Not transitive

▶ Reflexive

▶ Transitive

▶ Symmetric

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 65

Mathematical Preliminaries Binary Relations

Check Understanding

▶ Transitive

▶ Not symmetric

▶ Not reflexive

▶ Symmetric

▶ Not reflexive

▶ Not transitive

▶ Reflexive

▶ Symmetric

▶ Not transitive

▶ Reflexive

▶ Transitive

▶ Symmetric

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 65

Mathematical Preliminaries Binary Relations

Check Understanding

▶ Transitive

▶ Not symmetric

▶ Not reflexive

▶ Symmetric

▶ Not reflexive

▶ Not transitive

▶ Reflexive

▶ Symmetric

▶ Not transitive

▶ Reflexive

▶ Transitive

▶ Symmetric

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 65

Mathematical Preliminaries Binary Relations

Check Understanding

▶ Transitive

▶ Not symmetric

▶ Not reflexive

▶ Symmetric

▶ Not reflexive

▶ Not transitive

▶ Reflexive

▶ Symmetric

▶ Not transitive

▶ Reflexive

▶ Transitive

▶ Symmetric

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 65

Mathematical Preliminaries Binary Relations

Equivalence Relations

A relation that satisfies all three properties is called an
equivalence relation.

An equivalence relation decomposes S into
equivalence classes—any two members of the same equivalence
class bear the relation to each other.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 65

Mathematical Preliminaries Binary Relations

Which Properties Do These Relations Have?

Domain

Cities

Cities

People

People

People

Relation

Reachable-By-One-Flight-From

Reachable-From

Lives-In-The-Same-City-As

Is-An-Ancestor-Of

Is-A-Brother-Of

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 65

Mathematical Preliminaries Strings

Strings and Languages

▶ Symbol a, b, . . .

▶ Alphabet A finite, nonempty set of symbols

usually denoted by Σ

▶ String (informal) Finite number of symbols “put together”

e.g. abba, b, bb

Empty string denoted by ε

▶ Σ∗ = set of all strings over alphabet Σ

e.g. {a, b}∗ = {ε, a, b, aa, ab, . . .}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 29 / 65

Mathematical Preliminaries Strings

More on Strings

▶ Length of a string x is written |x |

|abba| = 4

|a| = 1

|ε| = 0

The set of strings of length n is denoted Σn

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 30 / 65

Mathematical Preliminaries Strings

Concatenation

▶ Concatenation of strings

Written as x · y , or just xy

Just follow the symbols of x by the symbols of y

x = abba, y = b ⇒ xy = abbab

xε = εx = x for any x

▶ The reversal xR of a string x is x written backwards.

If x = x1x2 · · · xn , then xR = xnxn−1 · · · x1.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 31 / 65

Mathematical Preliminaries Strings

Formal Inductive Definitions

▶ Like recursive data structures and recursive procedures when
programming.

▶ Strings and their length:

ε is a string of length 0.

If x is a string of length n and σ ∈ Σ, then xσ is a string of
length n + 1.

(i.e. start with ε and add one symbol at a time, like εaaba,
but we don’t write the initial ε unless the string is empty)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 65

Mathematical Preliminaries Strings

Inductive definitions of string operations

▶ The concatenation of x and y , defined by induction on |y |.

[|y | = 0] x · ε = x
[|y | = n + 1] write y = zσ for some |z | = n, σ ∈ Σ

define x · (zσ) = (x · z)σ

▶ The reversal of x , defined by induction on |x |:

[|x | = 0] εR = ε
[|x | = n + 1] (yσ)R = σ · yR,

for any |y | = n, σ ∈ Σ

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 33 / 65

Mathematical Preliminaries Strings

Inductive definitions of string operations

▶ The concatenation of x and y , defined by induction on |y |.

[|y | = 0] x · ε = x
[|y | = n + 1] write y = zσ for some |z | = n, σ ∈ Σ

define x · (zσ) = (x · z)σ

▶ The reversal of x , defined by induction on |x |:

[|x | = 0] εR = ε
[|x | = n + 1] (yσ)R = σ · yR,

for any |y | = n, σ ∈ Σ

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 33 / 65

Mathematical Preliminaries Proof by Induction

A proof by Induction

Proposition: (x · y) · z = x · (y · z) for all x , y , z ∈ Σ∗.

(So it doesn’t matter what order we concatenate, so we can just
write xyz in the future)

▶ Proof by induction on |z |:

[|z | = 0] (x · y) · z = (x · y) · ε = (x · y) = x · y
x · (y · z) = x · (y · ε) = x · (y) = x · y

[|z | = n + 1] Let z = ασ, where |α| = n, σ ∈ Σ
(x · y) · z = (x · y) · ασ = [(x · y) · α]σ,
x · (y · z) = x · (y · ασ) = x · (y · α)σ = [x · (y · α)]σ

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 34 / 65

Mathematical Preliminaries Proof by Induction

A proof by Induction

Proposition: (x · y) · z = x · (y · z) for all x , y , z ∈ Σ∗.

(So it doesn’t matter what order we concatenate, so we can just
write xyz in the future)

▶ Proof by induction on |z |:
[|z | = 0] (x · y) · z = (x · y) · ε = (x · y) = x · y

x · (y · z) = x · (y · ε) = x · (y) = x · y
[|z | = n + 1] Let z = ασ, where |α| = n, σ ∈ Σ

(x · y) · z = (x · y) · ασ = [(x · y) · α]σ,
x · (y · z) = x · (y · ασ) = x · (y · α)σ = [x · (y · α)]σ

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 34 / 65

Mathematical Preliminaries Proof by Induction

A proof by Induction

Proposition: (x · y) · z = x · (y · z) for all x , y , z ∈ Σ∗.

(So it doesn’t matter what order we concatenate, so we can just
write xyz in the future)

▶ Proof by induction on |z |:
[|z | = 0] (x · y) · z = (x · y) · ε = (x · y) = x · y

x · (y · z) = x · (y · ε) = x · (y) = x · y

[|z | = n + 1] Let z = ασ, where |α| = n, σ ∈ Σ
(x · y) · z = (x · y) · ασ = [(x · y) · α]σ,
x · (y · z) = x · (y · ασ) = x · (y · α)σ = [x · (y · α)]σ

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 34 / 65

Mathematical Preliminaries Proof by Induction

A proof by Induction

Proposition: (x · y) · z = x · (y · z) for all x , y , z ∈ Σ∗.

(So it doesn’t matter what order we concatenate, so we can just
write xyz in the future)

▶ Proof by induction on |z |:
[|z | = 0] (x · y) · z = (x · y) · ε = (x · y) = x · y

x · (y · z) = x · (y · ε) = x · (y) = x · y
[|z | = n + 1] Let z = ασ, where |α| = n, σ ∈ Σ

(x · y) · z = (x · y) · ασ = [(x · y) · α]σ,
x · (y · z) = x · (y · ασ) = x · (y · α)σ = [x · (y · α)]σ

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 34 / 65

Mathematical Preliminaries Proof by Induction

A proof by Induction

Proposition: (x · y) · z = x · (y · z) for all x , y , z ∈ Σ∗.

(So it doesn’t matter what order we concatenate, so we can just
write xyz in the future)

▶ Proof by induction on |z |:
[|z | = 0] (x · y) · z = (x · y) · ε = (x · y) = x · y

x · (y · z) = x · (y · ε) = x · (y) = x · y
[|z | = n + 1] Let z = ασ, where |α| = n, σ ∈ Σ

(x · y) · z = (x · y) · ασ = [(x · y) · α]σ,

x · (y · z) = x · (y · ασ) = x · (y · α)σ = [x · (y · α)]σ

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 34 / 65

Mathematical Preliminaries Proof by Induction

A proof by Induction

Proposition: (x · y) · z = x · (y · z) for all x , y , z ∈ Σ∗.

(So it doesn’t matter what order we concatenate, so we can just
write xyz in the future)

▶ Proof by induction on |z |:
[|z | = 0] (x · y) · z = (x · y) · ε = (x · y) = x · y

x · (y · z) = x · (y · ε) = x · (y) = x · y
[|z | = n + 1] Let z = ασ, where |α| = n, σ ∈ Σ

(x · y) · z = (x · y) · ασ = [(x · y) · α]σ,
x · (y · z) = x · (y · ασ) = x · (y · α)σ = [x · (y · α)]σ

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 34 / 65

Mathematical Preliminaries Proof by Induction

Proofs by Induction

To prove P(n) for all n ∈ N :

▶ “Base Case”: Prove P(0).

▶ “Induction Hypothesis”: Assume that P(k) holds for all k ≤ n
(where n is fixed but arbitrary).

▶ “Induction Step”: Given induction hypothesis,
prove that P(n + 1) holds.

If we prove the Base Case and the Induction Step, then we have
proved that P(n) holds for n = 0, 1, 2, . . . (i.e., for all n ∈ N)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 35 / 65

Mathematical Preliminaries Languages

Languages

▶ A language L over alphabet Σ is a set of strings over Σ
(i.e., L ⊆ Σ∗)

Computational problem: given x ∈ Σ∗, is x ∈ L?

Any YES/NO problem can be cast as a language.

▶ Examples of simple languages
▶ All words in the American Heritage Dictionary

{a, aah, aardvark , . . . , zyzzva}.

▶ ∅
▶ Σ∗

▶ Σ

▶ {x ∈ Σ∗ : |x | = 3} = {aaa, aab, aba, abb, baa, bab, bba, bbb}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 36 / 65

Mathematical Preliminaries Languages

More complicated languages

▶ The set of strings x ∈ {a, b}∗ such that x has an even number of
a ’s.

▶ The set of strings x ∈ {a, b}∗ such that x has more a ’s than b’s.

▶ The set of strings x ∈ {0, 1}∗ such that x is the binary
representation of a prime number.

▶ All ‘C’ programs that do not go into an infinite loop.

▶ L1 ∪ L2, L1 ∩ L2, L1 − L2 if L1 and L2 are languages

▶ · · ·

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 37 / 65

Mathematical Preliminaries Languages

The highly abstract and metaphorical term “language”

▶ A language can be either finite or infinite

▶ A language need not have any “internal structure”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 38 / 65

Mathematical Preliminaries Languages

Be careful to distinguish

ε The empty string (a string)

∅ The empty set (a set, possibly a language)

{ε} The set containing one element, which is
the empty string (a language)

{∅} The set containing one element, which is
the empty set (a set of sets, maybe a set of languages)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 39 / 65

Mathematical Preliminaries Languages

Operations on Languages

▶ Set operations ∪ ∩ −

▶ Concatenation of Languages

L1L2 = {xy |x ∈ L1, y ∈ L2}

e.g. {a, b}{a, bb} = {aa, ba, abb, bbb}

e.g. {ε}L = L

e.g. ∅L = ?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 40 / 65

Mathematical Preliminaries Languages

Kleene star

▶ Kleene Star

L∗ = {w1 · · ·wn |n ≥ 0,w1, . . . ,wn ∈ L}

e.g. {aa}∗ = {ε, aa, aaaa, . . .}

e.g. {ab, ba, aa, bb}∗ = all even length strings

e.g. Σ∗ = Kleene Star of Σ

e.g. ∅∗ = ?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 41 / 65

Doing Proofs

Doing Proofs

Reading: Sipser, §0.3 and §0.4.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 42 / 65

Doing Proofs What is a Proof?

What is a proof?

A proof is a formal argument of the truth of some mathematical
statement.

▶ “Formal” means that the successive statements are unambiguous,
and the steps interlock in a logical vise-grip.

▶ “Formal” also means that the argument could, in principle, be put
in syntax that a machine could check.

▶ But proofs are meant to be read by human beings, and ordinary
conversations and courtesies of human communication should be
observed!

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 43 / 65

Doing Proofs What is a Proof?

Why do we do proofs?

▶ To be absolutely positive the statement is true
▶ For example, it is commonly believed that there are no fast,

completely correct algorithms for the Traveling Salesman Problem.
But until someone proves “TSP is hard” we won’t know to stop
looking

▶ To understand why it is true, so we can tell whether it can be
extended or restricted and still remain true

▶ (Sometimes) so we can solve a problem associated with the
proposition
▶ if TSP is not hard, we’d like to find the algorithm

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 44 / 65

Doing Proofs What is a Proof?

An example (Sipser, Theorem 0.20)

Prove that A ∪ B = A ∩ B

1. Do we know what the statement to be proved means?
▶ What kinds of things does it talk about? (What are A and B?)

▶ What does the notation mean? (What are ∪, ∩, and A?)

2. Try a simple example first
▶ Say, A = {1, 2} and B = {2, 3}.

▶ Back up to Step 1 if necessary! Ask for help if necessary, but most
of the time the information is in the notes and problem sets.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 45 / 65

Doing Proofs What is a Proof?

An example (Sipser, Theorem 0.20)

Prove that A ∪ B = A ∩ B

1. Do we know what the statement to be proved means?
▶ What kinds of things does it talk about? (What are A and B?)

▶ What does the notation mean? (What are ∪, ∩, and A?)

2. Try a simple example first
▶ Say, A = {1, 2} and B = {2, 3}.

▶ Back up to Step 1 if necessary! Ask for help if necessary, but most
of the time the information is in the notes and problem sets.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 45 / 65

Doing Proofs What is a Proof?

An example (Sipser, Theorem 0.20)

Prove that A ∪ B = A ∩ B

1. Do we know what the statement to be proved means?
▶ What kinds of things does it talk about? (What are A and B?)

▶ What does the notation mean? (What are ∪, ∩, and A?)

2. Try a simple example first
▶ Say, A = {1, 2} and B = {2, 3}.

▶ Back up to Step 1 if necessary! Ask for help if necessary, but most
of the time the information is in the notes and problem sets.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 45 / 65

Doing Proofs What is a Proof?

Proof example, continued

3. Try drawing a picture and play with it.

A B

4. Decide on a proof strategy
▶ If we are trying to prove two sets equal, a good strategy is

mututal inclusion: Prove everything in the first is in the second,
and then that everything in the second is in the first.

▶ This illustrates a more general strategy: Try breaking the problem
into simpler chunks and solving them separately.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 46 / 65

Doing Proofs What is a Proof?

Proof example, continued

3. Try drawing a picture and play with it.

A B

4. Decide on a proof strategy
▶ If we are trying to prove two sets equal, a good strategy is

mututal inclusion: Prove everything in the first is in the second,
and then that everything in the second is in the first.

▶ This illustrates a more general strategy: Try breaking the problem
into simpler chunks and solving them separately.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 46 / 65

Doing Proofs What is a Proof?

Now really do the proof

1. Prove that for any sets A and B , A ∪ B ⊆ A ∩ B .

2. Prove that for any sets A and B , A ∩ B ⊆ A ∪ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 47 / 65

Doing Proofs What is a Proof?

A ∪ B ⊆ A ∩ B

▶ Let p be a member of A ∪ B .

▶ p ∈ A ∪ B

▶ p /∈ A ∪ B

▶ p /∈ A and p /∈ B

▶ p ∈ A and p ∈ B

▶ p ∈ A ∩ B

▶ Any member of A ∪ B is also a member of A ∩ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 48 / 65

Doing Proofs What is a Proof?

A ∪ B ⊆ A ∩ B

▶ Let p be a member of A ∪ B .

▶ p ∈ A ∪ B

▶ p /∈ A ∪ B

▶ p /∈ A and p /∈ B

▶ p ∈ A and p ∈ B

▶ p ∈ A ∩ B

▶ Any member of A ∪ B is also a member of A ∩ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 48 / 65

Doing Proofs What is a Proof?

A ∪ B ⊆ A ∩ B

▶ Let p be a member of A ∪ B .

▶ p ∈ A ∪ B

▶ p /∈ A ∪ B

▶ p /∈ A and p /∈ B

▶ p ∈ A and p ∈ B

▶ p ∈ A ∩ B

▶ Any member of A ∪ B is also a member of A ∩ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 48 / 65

Doing Proofs What is a Proof?

A ∪ B ⊆ A ∩ B

▶ Let p be a member of A ∪ B .

▶ p ∈ A ∪ B

▶ p /∈ A ∪ B

▶ p /∈ A and p /∈ B

▶ p ∈ A and p ∈ B

▶ p ∈ A ∩ B

▶ Any member of A ∪ B is also a member of A ∩ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 48 / 65

Doing Proofs What is a Proof?

A ∪ B ⊆ A ∩ B

▶ Let p be a member of A ∪ B .

▶ p ∈ A ∪ B

▶ p /∈ A ∪ B

▶ p /∈ A and p /∈ B

▶ p ∈ A and p ∈ B

▶ p ∈ A ∩ B

▶ Any member of A ∪ B is also a member of A ∩ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 48 / 65

Doing Proofs What is a Proof?

A ∪ B ⊆ A ∩ B

▶ Let p be a member of A ∪ B .

▶ p ∈ A ∪ B

▶ p /∈ A ∪ B

▶ p /∈ A and p /∈ B

▶ p ∈ A and p ∈ B

▶ p ∈ A ∩ B

▶ Any member of A ∪ B is also a member of A ∩ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 48 / 65

Doing Proofs What is a Proof?

A ∪ B ⊆ A ∩ B

▶ Let p be a member of A ∪ B .

▶ p ∈ A ∪ B

▶ p /∈ A ∪ B

▶ p /∈ A and p /∈ B

▶ p ∈ A and p ∈ B

▶ p ∈ A ∩ B

▶ Any member of A ∪ B is also a member of A ∩ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 48 / 65

Doing Proofs What is a Proof?

A ∩ B ⊆ A ∪ B

▶ Let q be a member of A ∩ B .

▶ q ∈ A ∩ B

▶ q ∈ A and q ∈ B

▶ q /∈ A and q /∈ B

▶ q /∈ A ∪ B

▶ q ∈ A ∪ B

▶ Any member of A ∩ B is also a member of A ∪ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 49 / 65

Doing Proofs What is a Proof?

A ∩ B ⊆ A ∪ B

▶ Let q be a member of A ∩ B .

▶ q ∈ A ∩ B

▶ q ∈ A and q ∈ B

▶ q /∈ A and q /∈ B

▶ q /∈ A ∪ B

▶ q ∈ A ∪ B

▶ Any member of A ∩ B is also a member of A ∪ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 49 / 65

Doing Proofs What is a Proof?

A ∩ B ⊆ A ∪ B

▶ Let q be a member of A ∩ B .

▶ q ∈ A ∩ B

▶ q ∈ A and q ∈ B

▶ q /∈ A and q /∈ B

▶ q /∈ A ∪ B

▶ q ∈ A ∪ B

▶ Any member of A ∩ B is also a member of A ∪ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 49 / 65

Doing Proofs What is a Proof?

A ∩ B ⊆ A ∪ B

▶ Let q be a member of A ∩ B .

▶ q ∈ A ∩ B

▶ q ∈ A and q ∈ B

▶ q /∈ A and q /∈ B

▶ q /∈ A ∪ B

▶ q ∈ A ∪ B

▶ Any member of A ∩ B is also a member of A ∪ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 49 / 65

Doing Proofs What is a Proof?

A ∩ B ⊆ A ∪ B

▶ Let q be a member of A ∩ B .

▶ q ∈ A ∩ B

▶ q ∈ A and q ∈ B

▶ q /∈ A and q /∈ B

▶ q /∈ A ∪ B

▶ q ∈ A ∪ B

▶ Any member of A ∩ B is also a member of A ∪ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 49 / 65

Doing Proofs What is a Proof?

A ∩ B ⊆ A ∪ B

▶ Let q be a member of A ∩ B .

▶ q ∈ A ∩ B

▶ q ∈ A and q ∈ B

▶ q /∈ A and q /∈ B

▶ q /∈ A ∪ B

▶ q ∈ A ∪ B

▶ Any member of A ∩ B is also a member of A ∪ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 49 / 65

Doing Proofs What is a Proof?

A ∩ B ⊆ A ∪ B

▶ Let q be a member of A ∩ B .

▶ q ∈ A ∩ B

▶ q ∈ A and q ∈ B

▶ q /∈ A and q /∈ B

▶ q /∈ A ∪ B

▶ q ∈ A ∪ B

▶ Any member of A ∩ B is also a member of A ∪ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 49 / 65

Doing Proofs What is a Proof?

A ∪ B = A ∩ B

▶ Because A ∩ B ⊆ A ∪ B

▶ and A ∪ B ⊆ A ∩ B

▶ A ∪ B = A ∩ B

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 50 / 65

Doing Proofs What is a Proof?

A ∪ B = A ∩ B

▶ Because A ∩ B ⊆ A ∪ B

▶ and A ∪ B ⊆ A ∩ B

▶ A ∪ B = A ∩ B

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 50 / 65

Doing Proofs What is a Proof?

A ∪ B = A ∩ B

▶ Because A ∩ B ⊆ A ∪ B

▶ and A ∪ B ⊆ A ∩ B

▶ A ∪ B = A ∩ B

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 50 / 65

Doing Proofs Hints on Writing Proofs

Hints for writing up good proofs
(thanks largely to Tom Leighton)

1. State the game plan, including the general proof technique you
are using. (This is the proof idea.)

2. Keep the flow linear and use English to explain when you are
moving from step to step.

3. Proofs are read by human beings, not machines.

4. Use as little new symbolism as possible, and define it clearly.

5. Use old symbolism correctly.

6. Avoid “clearly,” which bullies the reader and often hides errors.

7. When you are done, explain why you are done.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 51 / 65

Doing Proofs Hints on Writing Proofs

Hints for writing up good proofs
(thanks largely to Tom Leighton)

1. State the game plan, including the general proof technique you
are using. (This is the proof idea.)

2. Keep the flow linear and use English to explain when you are
moving from step to step.

3. Proofs are read by human beings, not machines.

4. Use as little new symbolism as possible, and define it clearly.

5. Use old symbolism correctly.

6. Avoid “clearly,” which bullies the reader and often hides errors.

7. When you are done, explain why you are done.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 51 / 65

Doing Proofs Hints on Writing Proofs

Hints for writing up good proofs
(thanks largely to Tom Leighton)

1. State the game plan, including the general proof technique you
are using. (This is the proof idea.)

2. Keep the flow linear and use English to explain when you are
moving from step to step.

3. Proofs are read by human beings, not machines.

4. Use as little new symbolism as possible, and define it clearly.

5. Use old symbolism correctly.

6. Avoid “clearly,” which bullies the reader and often hides errors.

7. When you are done, explain why you are done.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 51 / 65

Doing Proofs Hints on Writing Proofs

Hints for writing up good proofs
(thanks largely to Tom Leighton)

1. State the game plan, including the general proof technique you
are using. (This is the proof idea.)

2. Keep the flow linear and use English to explain when you are
moving from step to step.

3. Proofs are read by human beings, not machines.

4. Use as little new symbolism as possible, and define it clearly.

5. Use old symbolism correctly.

6. Avoid “clearly,” which bullies the reader and often hides errors.

7. When you are done, explain why you are done.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 51 / 65

Doing Proofs Hints on Writing Proofs

Hints for writing up good proofs
(thanks largely to Tom Leighton)

1. State the game plan, including the general proof technique you
are using. (This is the proof idea.)

2. Keep the flow linear and use English to explain when you are
moving from step to step.

3. Proofs are read by human beings, not machines.

4. Use as little new symbolism as possible, and define it clearly.

5. Use old symbolism correctly.

6. Avoid “clearly,” which bullies the reader and often hides errors.

7. When you are done, explain why you are done.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 51 / 65

Doing Proofs Hints on Writing Proofs

Hints for writing up good proofs
(thanks largely to Tom Leighton)

1. State the game plan, including the general proof technique you
are using. (This is the proof idea.)

2. Keep the flow linear and use English to explain when you are
moving from step to step.

3. Proofs are read by human beings, not machines.

4. Use as little new symbolism as possible, and define it clearly.

5. Use old symbolism correctly.

6. Avoid “clearly,” which bullies the reader and often hides errors.

7. When you are done, explain why you are done.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 51 / 65

Doing Proofs Hints on Writing Proofs

Hints for writing up good proofs
(thanks largely to Tom Leighton)

1. State the game plan, including the general proof technique you
are using. (This is the proof idea.)

2. Keep the flow linear and use English to explain when you are
moving from step to step.

3. Proofs are read by human beings, not machines.

4. Use as little new symbolism as possible, and define it clearly.

5. Use old symbolism correctly.

6. Avoid “clearly,” which bullies the reader and often hides errors.

7. When you are done, explain why you are done.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 51 / 65

Doing Proofs Hints on Writing Proofs

Finding a pattern

▶ One way to come up with an idea for a proof is to find a pattern in
small examples

▶ How many strings of length n over {a, b} have no consecutive
occurrences of a?

1. a, b: 2

2. ab, ba, bb: 3

3. aba, abb, bab, bba, bbb: 5

4. abab, abba, abbb, baba, babb, bbab, bbba, bbbb: 8

▶ Are these the Fibonacci numbers?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 52 / 65

Doing Proofs Hints on Writing Proofs

Finding a pattern

▶ One way to come up with an idea for a proof is to find a pattern in
small examples

▶ How many strings of length n over {a, b} have no consecutive
occurrences of a?

1. a, b: 2

2. ab, ba, bb: 3

3. aba, abb, bab, bba, bbb: 5

4. abab, abba, abbb, baba, babb, bbab, bbba, bbbb: 8

▶ Are these the Fibonacci numbers?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 52 / 65

Doing Proofs Hints on Writing Proofs

The Fibonacci Numbers

F0 = 0,
F1 = 1,
Fn = Fn−1 + Fn−2 for all n > 1
n 0 1 2 3 4 5 6 7 . . .
Fn 0 1 1 2 3 5 8 13 . . .

▶ Maybe the number of strings of length n with no two consecutive a
is Fn+2?

▶ Try breaking strings of length n with no consecutive a into two
subsets:

1. Those beginning with a

2. Those beginning with b

▶ How many of each?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 53 / 65

Doing Proofs Hints on Writing Proofs

The Fibonacci Numbers

F0 = 0,
F1 = 1,
Fn = Fn−1 + Fn−2 for all n > 1
n 0 1 2 3 4 5 6 7 . . .
Fn 0 1 1 2 3 5 8 13 . . .

▶ Maybe the number of strings of length n with no two consecutive a
is Fn+2?

▶ Try breaking strings of length n with no consecutive a into two
subsets:

1. Those beginning with a

2. Those beginning with b

▶ How many of each?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 53 / 65

Doing Proofs Proof by Induction

Proof by induction

▶ Think of an infinite ladder. We need to show something about
every rung. Here is the strategy:

1. Prove it for the bottom rung. This is called the Base Case.

2. Prove that no matter where you are on the ladder, if it is true for the
rung you are on and all the lower rungs, it must be true for the next
rung. This is called the Induction Step.

▶ If you can prove the base case and the induction step, you have in
one fell swoop proved it for every rung of the ladder.

▶ The Induction Hypothesis is the assumption, for some fixed but
arbitrary value of n, that the statement is true for the nth rung of
the ladder and all the lower rungs.

▶ So the Induction Step is to prove that the Induction Hypothesis
proves that the statement is true at the next rung of the ladder.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 54 / 65

Doing Proofs Proof by Induction

Proof

▶ Let P [n] be the statement that the number of strings of length n
without consecutive a is Fn+2.

▶ Base case: n = 1 and n = 2, i.e. check P [1] and P [2].

▶ Induction hypothesis is that P [r] holds for every r ≤ n. Here n is
fixed but arbitrary.

▶ Induction step. Consider strings of length n + 1 with no
consecutive a.

1. How many begin with a? Fn+1 by the induction hypothesis (the next
symbol must be b).

2. How many begin with b? Fn+2 by the induction hypothesis (no
restriction on remaining symbols except no consecutive a).

▶ Total = Fn+1 + Fn+2 = Fn+3 proving P [n + 1]

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 55 / 65

Doing Proofs Proof by Induction

Discovering, backing up, and fixing proofs

▶ Mathematicians always hide the process by which they discover
things

▶ In this example we would not have realized that we needed two
base cases until we were well into the proof

▶ And the crucial insight, to break the strings of length n into
subsets by their first letter, is an unexplained “rabbit out of the hat”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 56 / 65

Doing Proofs Proof by Induction

A bogus inductive “proof”

Let P(n) be the statement that for any x , xn = 1.
This is plainly false but we will “prove” it.

1. Base case: n = 0. Then P(0) is the statement that
for any x , x 0 = 1, which is plainly true.

2. Induction hypothesis is that P(k) holds for all k ≤ n.
3. Induction step. To prove P(n + 1) on the basis of the base case

and the induction hypothesis, note that

xn+1 =
xn · xn

xn−1

But by the induction hypothesis, xn = 1 and xn−1 = 1
(that is, P(n) and P(n − 1) are both true). So

xn+1 =
1 · 1
1

= 1

What went wrong???
Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 57 / 65

Doing Proofs Proof Techniques

Other proof techniques
▶ Proof by contradiction

1. Assume the exact opposite of what you are trying to prove

2. Deduce a logical contradiction

(Sipser Thm 0.24:
√
2 is irrational)

▶ Proof by construction
▶ Proves the existence of something and also delivers it into your

hands

▶ For every even number n, there is an undirected graph in which
every node is the endpoint of exactly 3 edges (i.e., is of degree 3)

▶ Proof idea:

n = 8

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 58 / 65

Doing Proofs Proof Techniques

Nonconstructive proofs

▶ Prove the existence of something without indicating how to put
your hands on it

▶ Two people in this class have a birthday in the same month

▶ Proof by counting argument

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 59 / 65

Doing Proofs Proof Techniques

The Pigeonhole Principle

▶ If n + 1 pigeons are in n pigeonholes then some pigeonhole has
more than one pigeon in it
▶ The “pigeons” are the class members

▶ Pigeonhole(p) = the month of the year on which p was born

▶ If there are more than 12 people in the class, this mapping cannot
be 1-1

▶ So there are p1, p2 such that Pigeonhole(p1) = Pigeonhole(p2)

▶ This existence proof gives no help in identifying people with the
same birth month

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 60 / 65

Doing Proofs Proof Techniques

Nonconstructive Proof Example #2:
Numbers with a certain property

▶ Proof that there exist irrational a, b such that ab is rational

▶ Is
√
2
√
2

rational? Don’t know. But consider both possibilities:

1.
√
2
√
2

is rational. In that case we are done (a = b =
√
2)

2.
√
2
√
2

is irrational. But then(√
2
√
2
)√

2

=
(√

2
)√

2·
√
2

=
(√

2
)2

= 2

which is rational and we are done (a =
√
2
√
2
, b =

√
2)

▶ Proof does not tell us whether case 1 or case 2 holds, but one of
the other must be true

▶ Law of the Excluded Middle or tertium non datur

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 61 / 65

Doing Proofs Proof Techniques

A combined constructive and nonconstructive proof

(A) In any group of six people there are either three that know each
other or three that don’t, but (B) in some groups of five people there
are no three who mutually know each other and also no three who
mutually don’t know each other.

▶ Constructive proof of (B):

A B

C

D
E

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 62 / 65

Doing Proofs Proof Techniques

Proof, continued

▶ Nonconstructive proof of (A) by contradiction
1. Suppose not. Then in some particular group of 6 people, there are

no 3 who mutually know each other and no 3 who mutually don’t.
2. Pick some individual X. Either X knows 3 of the other 5, or there are

some 3 of the other 5 whom X does not know. (Pigeonhole)
2.1 If X knows 3, say A, B, C, then no two of them can know each other.

For example, if A knew B, then X, A, B would all know each other. But
then no two of A, B, C know each other, contradiction.

2.2 If there are 3 whom X does not know, say A, B, C, then each two of
those must know each other. For example, if A and B did not know
each other, then no two of X, A, B would know each other. But then
A, B, C all know each other, contradiction.

▶ NB: The opposite of a “for all” statement is a “for some . . . not” or
“there exists . . . not” statement.

▶ In theory at least, (A) could also be solved by exhaustive search.
▶ It would be enough to say that case (2.2) is “symmetrical”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 63 / 65

Doing Proofs Proof Techniques

Visualizing the proof of (A)

x

a

b c

A solid line means the two know each other. If any of the
dashed lines is a “knows” relationship, then there would
be a group of 3 that know each other. If none of those
lines is a “knows” relationship, then A, B, and C are a
group of 3 that do not know each other.

If any of these dashed edges is not a “knows”
relationship, then the two nodes together with X form a
group of 3 that do not know each other. If all of the
dashed edges are “knows” relationships, A, B, and C are
a group of 3 that all know each other.

x

a

b c

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 64 / 65

Doing Proofs Proof Techniques

A nonconstructive proof that tells us almost nothing

▶ There exists an unbiased 7-sided die

▶ ???

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 65 / 65

	Introduction
	Objectives
	Computational Problems
	Languages
	Automata

	Mathematical Preliminaries
	Set Operations
	Functions
	Binary Relations
	Strings
	Proof by Induction
	Languages

	Doing Proofs
	What is a Proof?
	Hints on Writing Proofs
	Proof by Induction
	Proof Techniques

