
Computational Theory
Finite Automata and Regular Languages

Curtis Larsen

Utah Tech University—Computing

Fall 2024

Adapted from notes by Russ Ross

Adapted from notes by Harry Lewis

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 1 / 58

Finite Automata

Finite Automata

Reading: Sipser §1.1 and §1.2.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 2 / 58

Finite Automata Deterministic Finite Automata

Deterministic Finite Automata (DFAs)

Example: Home Stereo

▶ P = power button (ON/OFF)

▶ S = source button (CD/Radio/TV), only works when stereo is ON,
but source remembered when stereo is OFF.

▶ Starts OFF, in CD mode

▶ A computational problem: does a given sequence of button
presses w ∈ {P ,S}∗ leave the system with the radio on?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 3 / 58

Finite Automata Deterministic Finite Automata

Formal Definition of a DFA

▶ A DFA M is a 5-tuple (Q ,Σ, δ, q0,F)

Q : Finite set of states
Σ : Alphabet
δ : Transition function, Q × Σ → Q
q0 : Start state, q0 ∈ Q
F : Accept (or final) states, F ⊆ Q

▶ If δ(p, σ) = q ,

then if M is in state p and reads symbol σ ∈ Σ

then M enters state q (while moving to next input symbol)

▶ Home Stereo example: (in class exercise, define
M = (Q ,Σ, δ, q0,F), then draw state machine representation.)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 4 / 58

Finite Automata Deterministic Finite Automata

Another Visualization

1

2

3

4

a b b a b a

Finite-state control changes
state depending on:

� current state

� next symbol

Input tape

Start state marked with <Reading head
moves left to
right, one square
at a time Double-circled states

are accepting or final

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 5 / 58

Finite Automata Deterministic Finite Automata

Accepting Strings

M accepts string X if

▶ After starting M in the start (initial) state with head on first square,

▶ when all of X has been read,

▶ M winds up in a final state.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 6 / 58

Finite Automata DFA Examples

Examples

▶ Bounded Counting: A DFA for

{x |x has an even # of a ’s and an odd # of b’s}

q0 q1

q2 q3

a

a

bb

a

a

bb

Transition
function δ:

a b

q0 q1 q2
q1 q0 q3
q2 q3 q0
q3 q2 q1

i.e. δ(q0, a) = q1,
etc.

= start state = final state

Q = {q0, q1, q2, q3} Σ = {a, b} F = {q2}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 7 / 58

Finite Automata DFA Examples

Another Example, to work out together

▶ Pattern Recognition: A DFA that accepts
{x |x has aab as a substring}.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 58

Finite Automata Computation on DFAs

Formal Definition of Computation

M = (Q ,Σ, δ, q0,F) accepts w = w1w2 · · ·wn ∈ Σ∗

(where each wi ∈ Σ) if there exist r0, . . . , rn ∈ Q such that

1. r0 = q0,

2. δ(ri ,wi+1) = ri+1 for each i = 0, . . . ,n − 1 and

3. rn ∈ F .

The language recognized (or accepted) by M , denoted L(M),
is the set of all strings accepted by M .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 9 / 58

Finite Automata Computation on DFAs

Definition of Regular Languages

Definition 1.16 A language is called a regular language if some finite
automaton recognizes it.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 10 / 58

Finite Automata Computation on DFAs

Transition function on an entire string

More formal (not necessary for us, but notation sometimes useful):

▶ Inductively define δ∗ : Q × Σ∗ → Q by δ∗(q , ε) = q ,
δ∗(q ,wσ) = δ(δ∗(q ,w), σ).

▶ Intuitively, δ∗(q ,w) =
“state reached after starting in q and reading the string w .”

▶ M accepts w if δ∗(q0,w) ∈ F .

Determinism: Given M and w , the states r0, . . . , rn are uniquely
determined. Or in other words, δ∗(q ,w) is well defined for any q and w :
There is precisely one state to which w “drives” M if it is started in a
given state.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 11 / 58

Finite Automata Computation on DFAs

Transition function on an entire string

More formal (not necessary for us, but notation sometimes useful):

▶ Inductively define δ∗ : Q × Σ∗ → Q by δ∗(q , ε) = q ,
δ∗(q ,wσ) = δ(δ∗(q ,w), σ).

▶ Intuitively, δ∗(q ,w) =
“state reached after starting in q and reading the string w .”

▶ M accepts w if δ∗(q0,w) ∈ F .

Determinism: Given M and w , the states r0, . . . , rn are uniquely
determined. Or in other words, δ∗(q ,w) is well defined for any q and w :
There is precisely one state to which w “drives” M if it is started in a
given state.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 11 / 58

Finite Automata Nondeterministic Finite Automata

The impulse for nondeterminism

A language for which it is hard to design a DFA:

{x1x2 · · · xk |k ≥ 0 and each xi ∈ {aab, aaba, aaa}}

But it is easy to imagine a “device” to accept this language if there
sometimes can be several possible transitions!

a a

ba

a

a

b

a

a

a

a a

a

a

b
b

a a b
a

ε

a

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 58

Finite Automata Nondeterministic Finite Automata

Nondeterministic Finite Automata

An NFA is a 5-tuple (Q ,Σ, δ, q0,F), where

▶ Q ,Σ, q0,F are as for DFAs

▶ δ : Q × (Σ ∪ {ε}) → P(Q)

When in state p reading symbol σ, can go to any state q in
the set δ(p, σ).

▶ there may be more than one such q , or

▶ there may be none (in case δ(p, σ) = ∅).

Can “jump” from p to any state in δ(p, ε) without moving the input head.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 13 / 58

Finite Automata Computation on NFAs

Computations by an NFA

N = (Q ,Σ, δ, q0,F) accepts w ∈ Σ∗ if we can write w = y1y2 . . . ym
where each yi ∈ Σ ∪ {ε} and there exist r0, . . . , rm ∈ Q such that

1. r0 = q0,

2. ri+1 ∈ δ(ri , yi+1) for each i = 0, . . . ,m − 1, and

3. rm ∈ F .

Nondeterminism: Given N and w , the states r0, . . . , rm are not
necessarily determined.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 14 / 58

Finite Automata Computation on NFAs

Example of an NFA

N :
q0 q1 q2 q3a a b

a

a

b

N = ({q0, q1, q2, q3}, {a, b}, δ, q0, {q0}), where δ is given by:

a b ε

q0 {q1} ∅ ∅
q1 {q2} ∅ ∅
q2 {q0} {q0, q3} ∅
q3 {q0} ∅ ∅

Work out the tree of all possible computations on aabaab

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 15 / 58

Finite Automata Computation on NFAs

How to simulate NFAs?

▶ NFA accepts w if there is at least one accepting computational
path on input w .

▶ But the number of paths may grow exponentially with
the length of w !

▶ Can exponential search be avoided?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 16 / 58

NFAs and DFAs Closure Properties

NFAs and DFAs Closure Properties

Reading: Sipser §1.2.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 17 / 58

NFAs and DFAs Closure Properties NFAs vs. DFAs

NFAs vs. DFAs

NFAs seem more powerful than DFAs. Are they?

Theorem 1.39: For every NFA N , there exists a DFA M such that
L(M) = L(N).

Proof Outline: Given any NFA N , to construct a DFA M such that
L(M) = L(N):

▶ Have the DFA keep track, at all times, of all possible states the
NFA could be in after reading the same initial part of the input
string.

▶ I.e., the states of M are sets of states of N , and δ∗M (R,w) is the
set of all states N could reach after reading w , starting from a
state in R.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18 / 58

NFAs and DFAs Closure Properties NFAs vs. DFAs

NFAs vs. DFAs

NFAs seem more powerful than DFAs. Are they?

Theorem 1.39: For every NFA N , there exists a DFA M such that
L(M) = L(N).

Proof Outline: Given any NFA N , to construct a DFA M such that
L(M) = L(N):

▶ Have the DFA keep track, at all times, of all possible states the
NFA could be in after reading the same initial part of the input
string.

▶ I.e., the states of M are sets of states of N , and δ∗M (R,w) is the
set of all states N could reach after reading w , starting from a
state in R.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18 / 58

NFAs and DFAs Closure Properties The Subset Construction

Example of the SUBSET CONSTRUCTION

NFA N for {x1x2 · · · xk |k ≥ 0 and each xi ∈ {aab, aaba, aaa}}.

N :
0 1 2 3

a a b

a

a

b

N starts in state 0 so we will construct a DFA M starting in state {0}.

Here it is:

a a b a a a
b

a a

b

b

a

b

0 1 2 03 01 12 02

∅

All other transitions are
to the “dead state” ∅.
The other states are
unreachable, though
technically must be
defined. Final states
are all those containing
0, the final state of N .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 58

NFAs and DFAs Closure Properties The Subset Construction

Example of the SUBSET CONSTRUCTION

NFA N for {x1x2 · · · xk |k ≥ 0 and each xi ∈ {aab, aaba, aaa}}.

N :
0 1 2 3

a a b

a

a

b

N starts in state 0 so we will construct a DFA M starting in state {0}.
Here it is:

a a b a a a
b

a a

b

b

a

b

0 1 2 03 01 12 02

∅

All other transitions are
to the “dead state” ∅.
The other states are
unreachable, though
technically must be
defined. Final states
are all those containing
0, the final state of N .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 58

NFAs and DFAs Closure Properties The Subset Construction

Formal Construction of DFA M from
NFA N = (Q ,Σ, δ, q0,F)

On the assumption that δ(p, ε) = ∅ for all states p.
(i.e., we assume no ε-transitions, just to simplify things a bit)

M = (Q ′,Σ, δ′, q ′0,F
′) where

Q ′ = P(Q)
q ′0 = {q0}
F ′ = {R ⊆ Q |R ∩ F ̸= ∅} (that is, R ∈ Q ′)

δ′(R, σ) = {q ∈ Q |q ∈ δ(r , σ) for some r ∈ R}
=

⋃
r∈R

δ(r , σ)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 58

NFAs and DFAs Closure Properties The Subset Construction

Proving that the construction works

Claim: For every string w , running M on input w ends in the state
{q ∈ Q | some computation of N on input w ends in state q}.

Pf: By induction on |w |.

Can be extended to work even for NFAs with ε-transitions.

“THE SUBSET CONSTRUCTION”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 58

NFAs and DFAs Closure Properties Closure Properties

Closure Properties

Theorem: The class of regular languages is closed under:

▶ (1.25/1.45) Union: L1 ∪ L2

▶ (1.26/1.47) Concatenation: L1 ◦ L2 = {xy |x ∈ L1 and y ∈ L2}
▶ (1.49) Kleene ∗: L∗

1 = {x1x2 · · · xk |k ≥ 0 and each xi ∈ L1}
▶ (P1.14) Complement: L1

▶ (1.26) Intersection: L1 ∩ L2

Union: If L1 and L2 are regular, then L1 ∪ L2 is regular.

ε

ε

M1

M2

M

⇒

M has the states and transitions of
M1 and M2 plus a new start state
ε-transitioning to the old start
states.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 58

NFAs and DFAs Closure Properties Closure Properties

Closure Properties

Theorem: The class of regular languages is closed under:

▶ (1.25/1.45) Union: L1 ∪ L2

▶ (1.26/1.47) Concatenation: L1 ◦ L2 = {xy |x ∈ L1 and y ∈ L2}
▶ (1.49) Kleene ∗: L∗

1 = {x1x2 · · · xk |k ≥ 0 and each xi ∈ L1}
▶ (P1.14) Complement: L1

▶ (1.26) Intersection: L1 ∩ L2

Union: If L1 and L2 are regular, then L1 ∪ L2 is regular.

ε

ε

M1

M2

M

⇒

M has the states and transitions of
M1 and M2 plus a new start state
ε-transitioning to the old start
states.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 58

NFAs and DFAs Closure Properties Closure Properties

Closure Properties

Theorem: The class of regular languages is closed under:

▶ (1.25/1.45) Union: L1 ∪ L2

▶ (1.26/1.47) Concatenation: L1 ◦ L2 = {xy |x ∈ L1 and y ∈ L2}
▶ (1.49) Kleene ∗: L∗

1 = {x1x2 · · · xk |k ≥ 0 and each xi ∈ L1}
▶ (P1.14) Complement: L1

▶ (1.26) Intersection: L1 ∩ L2

Union: If L1 and L2 are regular, then L1 ∪ L2 is regular.

ε

ε

M1

M2

M

⇒

M has the states and transitions of
M1 and M2 plus a new start state
ε-transitioning to the old start
states.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 58

NFAs and DFAs Closure Properties Closure Properties

Concatenation, Kleene∗, Complementation

Concatenation:
L(M) = L(M1) ◦ L(M2)

M1

M2

M

⇒

ε ε

Kleene∗:
L(M) = L(M1)

∗

ε
ε

ε

M1 M

⇒

Complement:
L(M) = L(M1)

M1 M

⇒

▶ Assume M is
deterministic
(or make it so)

▶ Invert final/
nonfinal states

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 58

NFAs and DFAs Closure Properties Closure Properties

Concatenation, Kleene∗, Complementation

Concatenation:
L(M) = L(M1) ◦ L(M2)

M1

M2

M

⇒

ε ε

Kleene∗:
L(M) = L(M1)

∗

ε
ε

ε

M1 M

⇒

Complement:
L(M) = L(M1)

M1 M

⇒

▶ Assume M is
deterministic
(or make it so)

▶ Invert final/
nonfinal states

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 58

NFAs and DFAs Closure Properties Closure Properties

Concatenation, Kleene∗, Complementation

Concatenation:
L(M) = L(M1) ◦ L(M2)

M1

M2

M

⇒

ε ε

Kleene∗:
L(M) = L(M1)

∗ ε
ε

ε

M1 M

⇒

Complement:
L(M) = L(M1)

M1 M

⇒

▶ Assume M is
deterministic
(or make it so)

▶ Invert final/
nonfinal states

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 58

NFAs and DFAs Closure Properties Closure Properties

Concatenation, Kleene∗, Complementation

Concatenation:
L(M) = L(M1) ◦ L(M2)

M1

M2

M

⇒

ε ε

Kleene∗:
L(M) = L(M1)

∗ ε
ε

ε

M1 M

⇒

Complement:
L(M) = L(M1)

M1 M

⇒

▶ Assume M is
deterministic
(or make it so)

▶ Invert final/
nonfinal states

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 58

NFAs and DFAs Closure Properties Closure Properties

Closure under intersection

Intersection: S ∩ T = S ∪ T

S T

= S

= T

Hence closure under union
and complement implies
closure under intersection.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 24 / 58

NFAs and DFAs Closure Properties Closure Properties

A more constructive and direct proof of closure under
intersection

Better way (“Cross Product Construction”):

From DFAs M1 = (Q1,Σ, δ1, q1,F1) and M2 = (Q2,Σ, δ2, q2,F2),
construct M = (Q ,Σ, δ, q0,F):

Q = Q1 ×Q2

F = F1 × F2

δ(⟨r1, r2⟩, σ) = ⟨δ1(r1, σ), δ2(r2, σ)⟩
q0 = ⟨q1, q2⟩

Then L(M1) ∩ L(M2) = L(M)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 25 / 58

NFAs and DFAs Closure Properties Efficiency of NFAs vs. DFAs

Some Efficiency Considerations

The subset construction shows that any n-state NFA can be
implemented as a 2n -state DFA.

NFA States DFA States
4 16
10 1024
100 2100

1000 21000 ≫ the number of particles in the universe

How to implement this construction on an ordinary digital computer?

NFA states
1, . . . ,n

DFA state bit vector
0 1 1 0 · · · 1
1 2 n

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 58

NFAs and DFAs Closure Properties Efficiency of NFAs vs. DFAs

Is this construction the best we can do?

Could there be a construction that always produces an n2 state DFA
for example?

Theorem: For every n ≥ 1, there is a language Ln such that

1. There is an (n + 1)-state NFA recognizing Ln .

2. There is no DFA recognizing Ln with fewer than 2n states.

Conclusion: For finite automata, nondeterminism provides an
exponential savings over determinism (in the worst case).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 58

NFAs and DFAs Closure Properties Proving Efficiency of NFAs

Proving that exponential blowup is sometimes
unavoidable

(Could there be a construction that always produces a 2n state DFA for
example?)

Consider (for some fixed n = 17, say)

Ln = {w ∈ {a, b}∗ : the nth symbol from the right end of w is an a}

▶ There is an (n + 1)-state NFA that accepts Ln .

▶ There is no DFA that accepts Ln and has < 2n states

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 58

NFAs and DFAs Closure Properties Proving Efficiency of NFAs

A “Fooling Argument”

▶ Suppose a DFA M has < 2n states, and L(M) = Ln

▶ There are 2n strings of length n.

▶ By the pigeonhole principle, two such strings x ̸= y must drive M
to the same state q .

▶ Suppose x and y differ at the k th position from the right end (one
has a, the other has b)
(k = 1, 2, . . . ,or n)

▶ Then M must treat xan−k and yan−k identically (accept both or
reject both). These strings differ at position n from the right end.

▶ So L(M) ̸= Ln , contradiction. QED.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 29 / 58

NFAs and DFAs Closure Properties Proving Efficiency of NFAs

Illustration of the fooling argument

a

b

x
̸=
y

M is in state q0 M is in state q

n

k

a a a

b a a

xan−k

yan−k

M in state q0 M in state q

Different symbols n
positions from right

M in same state p

n

▶ x and y are different strings
(so there is a position k where one has a and the other has b)

▶ But both strings drive M from s to the same state q

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 30 / 58

NFAs and DFAs Closure Properties Proving Efficiency of NFAs

What the argument proves

▶ This shows that the subset construction is within a factor of 2 of
being optimal

▶ In fact it is optimal, i.e., as good as we can do in the worst case

▶ In many cases, the “generate-states-as-needed” method yields a
DFA with ≪ 2n states

(e.g. if the NFA was deterministic to begin with!)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 31 / 58

Regular Expressions

Regular Expressions

Reading: Sipser §1.3.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 58

Regular Expressions Defining Regular Expressions

Regular Expressions

▶ Let Σ = {a, b}. The regular expressions over Σ are certain
expressions formed using the symbols {a, b, (,), ε, ∅,∪, ◦, ∗}

▶ We use red for the strings under discussion (the object
language) and black for the ordinary notation we are using for
doing mathematics (the metalanguage).

▶ Construction Rules (= inductive/recursive definition):

1. a, b, ε, ∅ are regular expressions

2. If R1 and R2 are RE’s, then so are (R1◦R2), (R1∪R2), and (R∗
1).

▶ Examples:
▶ (a ◦ b)
▶ ((((a ◦ (b∗)) ◦ c) ∪ ((b∗) ◦ a))∗)
▶ (∅∗)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 33 / 58

Regular Expressions Regular Expression Semantics

What REs Do

▶ Regular expressions (which are strings) represent languages
(which are sets of strings), via the function L:

(1) L(a) = {a}
(2) L(b) = {b}
(3) L(ε) = {ε}
(4) L(∅) = ∅
(5) L((R1◦R2)) = L(R1) ◦ L(R2)
(6) L((R1∪R2)) = L(R1) ∪ L(R2)
(7) L((R∗

1)) = L(R1)
∗

▶ Example:
L(((a∗) ◦ (b∗))) = {a}∗ ◦ {b}∗

▶ L(·) is called the semantics of the expression.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 34 / 58

Regular Expressions Relaxing the Notation

Syntactic Shorthand

▶ Drop the distinction between red and black, between object
language and metalanguage

▶ Omit ◦ symbol and many parentheses

▶ Union and concatenation of languages are associative

i.e., for any languages L1,L2,L3:

(L1L2)L3 = L1(L2L3) and (L1 ∪ L2) ∪ L3 = L1 ∪ (L2 ∪ L3)

so we can write just R1R2R3 and R1 ∪ R2 ∪ R3

For example, the following are all equivalent:

((ab)c) (a(bc)) abc

▶ Equivalent means “same semantics, maybe different syntax”
Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 35 / 58

Regular Expressions Relaxing the Notation

More syntactic sugar

▶ By convention, ∗ takes precedence over ◦, which takes
precedence over ∪.

So a ∪ bc∗ is equivalent to (a ∪ (b ◦ (c∗)))

▶ Σ is shorthand for a ∪ b (or the analogous RE for whatever
alphabet is in use).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 36 / 58

Regular Expressions Examples of Regular Expressions

Examples of Regular Languages

Strings ending in a = Σ∗a

Strings containing the substring abaab = ?

Strings of even length = (aa ∪ ab ∪ ba ∪ bb)∗

Strings with even # of a ’s = (b ∪ ab∗a)∗

= b∗(ab∗ab∗)∗

Strings with ≤ two a ’s = ?

Strings of form x1x2 . . . xk , k ≥ 0, each xi ∈ {aab, aaba, aaa} = ?

Decimal numerals, no leading zeros
= 0 ∪ ((1 ∪ . . . ∪ 9)(0 ∪ . . . ∪ 9)∗)

All strings with an even # of a ’s and an even # of b’s
= (b ∪ ab∗a)∗ ∩ (a ∪ ba∗b)∗ but this isn’t a regular expression
= (aa ∪ bb)∗((ab ∪ ba)(aa ∪ bb)∗(ab ∪ ba)(aa ∪ bb)∗)∗

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 37 / 58

Regular Expressions Examples of Regular Expressions

Examples of Regular Languages

Strings ending in a = Σ∗a

Strings containing the substring abaab = ?

Strings of even length = (aa ∪ ab ∪ ba ∪ bb)∗

Strings with even # of a ’s = (b ∪ ab∗a)∗

= b∗(ab∗ab∗)∗

Strings with ≤ two a ’s = ?

Strings of form x1x2 . . . xk , k ≥ 0, each xi ∈ {aab, aaba, aaa} = ?

Decimal numerals, no leading zeros
= 0 ∪ ((1 ∪ . . . ∪ 9)(0 ∪ . . . ∪ 9)∗)

All strings with an even # of a ’s and an even # of b’s
= (b ∪ ab∗a)∗ ∩ (a ∪ ba∗b)∗ but this isn’t a regular expression
= (aa ∪ bb)∗((ab ∪ ba)(aa ∪ bb)∗(ab ∪ ba)(aa ∪ bb)∗)∗

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 37 / 58

Regular Expressions Examples of Regular Expressions

Examples of Regular Languages

Strings ending in a = Σ∗a

Strings containing the substring abaab = ?

Strings of even length = (aa ∪ ab ∪ ba ∪ bb)∗

Strings with even # of a ’s = (b ∪ ab∗a)∗

= b∗(ab∗ab∗)∗

Strings with ≤ two a ’s = ?

Strings of form x1x2 . . . xk , k ≥ 0, each xi ∈ {aab, aaba, aaa} = ?

Decimal numerals, no leading zeros
= 0 ∪ ((1 ∪ . . . ∪ 9)(0 ∪ . . . ∪ 9)∗)

All strings with an even # of a ’s and an even # of b’s
= (b ∪ ab∗a)∗ ∩ (a ∪ ba∗b)∗ but this isn’t a regular expression
= (aa ∪ bb)∗((ab ∪ ba)(aa ∪ bb)∗(ab ∪ ba)(aa ∪ bb)∗)∗

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 37 / 58

Regular Expressions Examples of Regular Expressions

Examples of Regular Languages

Strings ending in a = Σ∗a

Strings containing the substring abaab = ?

Strings of even length = (aa ∪ ab ∪ ba ∪ bb)∗

Strings with even # of a ’s = (b ∪ ab∗a)∗

= b∗(ab∗ab∗)∗

Strings with ≤ two a ’s = ?

Strings of form x1x2 . . . xk , k ≥ 0, each xi ∈ {aab, aaba, aaa} = ?

Decimal numerals, no leading zeros
= 0 ∪ ((1 ∪ . . . ∪ 9)(0 ∪ . . . ∪ 9)∗)

All strings with an even # of a ’s and an even # of b’s
= (b ∪ ab∗a)∗ ∩ (a ∪ ba∗b)∗ but this isn’t a regular expression
= (aa ∪ bb)∗((ab ∪ ba)(aa ∪ bb)∗(ab ∪ ba)(aa ∪ bb)∗)∗

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 37 / 58

Regular Expressions Examples of Regular Expressions

Examples of Regular Languages

Strings ending in a = Σ∗a

Strings containing the substring abaab = ?

Strings of even length = (aa ∪ ab ∪ ba ∪ bb)∗

Strings with even # of a ’s = (b ∪ ab∗a)∗

= b∗(ab∗ab∗)∗

Strings with ≤ two a ’s = ?

Strings of form x1x2 . . . xk , k ≥ 0, each xi ∈ {aab, aaba, aaa} = ?

Decimal numerals, no leading zeros
= 0 ∪ ((1 ∪ . . . ∪ 9)(0 ∪ . . . ∪ 9)∗)

All strings with an even # of a ’s and an even # of b’s
= (b ∪ ab∗a)∗ ∩ (a ∪ ba∗b)∗ but this isn’t a regular expression

= (aa ∪ bb)∗((ab ∪ ba)(aa ∪ bb)∗(ab ∪ ba)(aa ∪ bb)∗)∗

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 37 / 58

Regular Expressions Examples of Regular Expressions

Examples of Regular Languages

Strings ending in a = Σ∗a

Strings containing the substring abaab = ?

Strings of even length = (aa ∪ ab ∪ ba ∪ bb)∗

Strings with even # of a ’s = (b ∪ ab∗a)∗

= b∗(ab∗ab∗)∗

Strings with ≤ two a ’s = ?

Strings of form x1x2 . . . xk , k ≥ 0, each xi ∈ {aab, aaba, aaa} = ?

Decimal numerals, no leading zeros
= 0 ∪ ((1 ∪ . . . ∪ 9)(0 ∪ . . . ∪ 9)∗)

All strings with an even # of a ’s and an even # of b’s
= (b ∪ ab∗a)∗ ∩ (a ∪ ba∗b)∗ but this isn’t a regular expression
= (aa ∪ bb)∗((ab ∪ ba)(aa ∪ bb)∗(ab ∪ ba)(aa ∪ bb)∗)∗

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 37 / 58

Regular Expressions Regular Expressions and Finite Automata

Equivalence of REs and FAs

Recall: we call a language regular if there is a finite automaton that
recognizes it.

Theorem: For every regular expression R, L(R) is regular.

Proof (going back to hyper-formality for a moment):

Induct on the construction of regular expressions
(“structural induction”).

Base Case: R is a, b, ε, or ∅

σ

accepts {σ} accepts ∅ accepts {ε}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 38 / 58

Regular Expressions Regular Expressions and Finite Automata

Equivalence of REs and FAs, continued

Inductive Step: If R1 and R2 are REs and L(R1) and L(R2) are
regular (inductive hyp.), then so are:

L((R1◦R2)) = L(R1) ◦ L(R2)
L((R1∪R2)) = L(R1) ∪ L(R2)

L((R∗
1)) = L(R1)

∗

(By the closure properties of the regular languages).

Proof is constructive (actually produces the equivalent NFA, not just
proves its existence).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 39 / 58

Regular Expressions Regular Expressions and Finite Automata

Example conversion of a RE to a FA

(a ∪ ε)(aa ∪ bb)∗

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 40 / 58

Regular Expressions Regular Expressions and Finite Automata

The Other Direction

Theorem: For every regular language L, there is a
regular expression R such that L(R) = L.

Proof:

Define generalized NFAs (GNFAs) (of interest only for this proof)

▶ Transitions labelled by regular expressions (rather than symbols).

▶ One start state qstart and only one accept state qaccept.

▶ Exactly one transition from qi to qj for every two states
qi ̸= qaccept and qj ̸= qstart (including self-loops).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 41 / 58

Regular Expressions Constructing REs from FAs

Steps toward the proof

Lemma: For every NFA N , there is an equivalent GNFA G .

▶ Add new start state, new accept state. Transitions?

▶ If multiple transitions between two states, combine. How?

▶ If no transition between two states, add one. With what transition?

Lemma: For every GNFA G , there is an equivalent RE R.

▶ By induction on the number of states k of G .

▶ Base case: k = 2. Set R to be the label of the transition
from qstart to qaccept.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 42 / 58

Regular Expressions Constructing REs from FAs

Ripping and repairing GNFAs to reduce the number of
states

▶ Inductive Hypothesis: Suppose every GNFA G of k or fewer
states has an equivalent RE (where k ≥ 2).

▶ Induction Step: Given a (k + 1)-state GNFA G , we will construct
an equivalent k -state GNFA G ′.

Rip: Remove a state qr (other than qstart, qaccept).

Repair: For every two states qi /∈ {qaccept, qr}, qj /∈ {qstart, qr},
let Ri ,j , Ri ,r , Rr ,r , Rr ,j be REs on transitions
qi → qj , qi → qr , qr → qr and qr → qj in G , respectively,

In G ′, put RE Ri ,j ∪ Ri ,rR
∗
r ,rRr ,j on transition qi → qj .

Argue that L(G ′) = L(G), which is regular by IH.

Also constructive.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 43 / 58

Regular Expressions Constructing REs from FAs

Example conversion of an NFA to a RE

An NFA accepting strings with an even number of a ’s with Σ = {a, b}.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 44 / 58

Non-Regular Languages

Non-Regular Languages

Reading: Sipser, §1.4.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 45 / 58

Non-Regular Languages A Non-Regular Language

Goal: Explicit Non-Regular Languages

It appears that a language such as

L = {x ∈ Σ∗ : |x | = 2n for some n ≥ 0}
= {a, b, aa, ab, ba, bb, aaaa, . . . , bbbb, aaaaaaaa, . . .}

can’t be regular because the “gaps” in the set of possible lengths
become arbitrarily large, and no DFA could keep track of them.

But this isn’t a proof!

Approach:

1. Prove some general property P of all regular languages.

2. Show that L does not have P .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 46 / 58

Non-Regular Languages The Pumping Lemma

Pumping Lemma (Basic Version)

If L is regular, then there is a number p (the pumping length)
such that

every string s ∈ L of length at least p
can be divided into s = xyz , where y ̸= ε and

for every n ≥ 0, xynz ∈ L.

n = 1

n = 0

n = 2

· · ·

x y z

x z

x y y z

▶ Why is the part about p needed?

▶ Why is the part about y ̸= ε needed?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 47 / 58

Non-Regular Languages The Pumping Lemma

Pumping Lemma (Basic Version)

If L is regular, then there is a number p (the pumping length)
such that

every string s ∈ L of length at least p
can be divided into s = xyz , where y ̸= ε and

for every n ≥ 0, xynz ∈ L.

n = 1

n = 0

n = 2

· · ·

x y z

x z

x y y z

▶ Why is the part about p needed?

▶ Why is the part about y ̸= ε needed?
Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 47 / 58

Non-Regular Languages Proving the Pumping Lemma

Proof of Pumping Lemma

(Another fooling argument)

▶ Since L is regular, there is a DFA M accepting L.

▶ Let p = # states in M .

▶ Suppose s ∈ L has length l ≥ p.

▶ M passed through a sequence of l + 1 > p states while
accepting s (including the first and last states): say, q0, . . . , ql .

▶ Two of these states must be the same: say, qi = qj where i < j

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 48 / 58

Non-Regular Languages Proving the Pumping Lemma

Pumping, continued

▶ Thus, we can break s into x , y , z where y ̸= ε (though x , z may
equal ε):

x y z

M in state qi M in state qj = qi

▶ If more copies of y are inserted, M “can’t tell the difference,”
i.e., the state entering y is the same as the state leaving it.

▶ So since xyz ∈ L, then xynz ∈ L for all n.

Proof also shows:

▶ We can take p = # states in smallest DFA recognizing L.

▶ Can guarantee division s = xyz satisfies |xy | ≤ p (or |yz | ≤ p).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 49 / 58

Non-Regular Languages Proving the Pumping Lemma

Pumping, continued

▶ Thus, we can break s into x , y , z where y ̸= ε (though x , z may
equal ε):

x y z

M in state qi M in state qj = qi

▶ If more copies of y are inserted, M “can’t tell the difference,”
i.e., the state entering y is the same as the state leaving it.

▶ So since xyz ∈ L, then xynz ∈ L for all n.

Proof also shows:

▶ We can take p = # states in smallest DFA recognizing L.

▶ Can guarantee division s = xyz satisfies |xy | ≤ p (or |yz | ≤ p).
Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 49 / 58

Non-Regular Languages Pumping Lemma Example

Pumping Lemma Example

▶ Consider

L = {x : x has an even # of a ’s and an odd # of b’s}

▶ Since L is regular, pumping lemma holds.

(i.e., every sufficiently long string s in L is “pumpable”)

▶ For example, if s = aab, we can write x = ε, y = aa, and z = b.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 50 / 58

Non-Regular Languages Pumping Lemma Example

Pumping the even a ’s, odd b’s language

Claim: L satisfies pumping lemma with pumping length p = 4.

Proof:

Consider any string s of length at least 4, and write s = tu
where |t | = 4

▶ Case 1: t has an even number of a ’s and an even number of b’s.
Then we can set x = ε, y = t , z = u.

▶ Case 2: t has 3 a ’s and 1 b. Then we can set y = aa.

▶ Case 3: t has 3 b’s and 1 a. Then we can set y = bb.

▶ So L satisfies the pumping lemma with pumping length p = 4.

Q: Can the Pumping Lemma be used to prove that L is regular?
That is, does “Pumpable” ⇒ Regular?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 51 / 58

Non-Regular Languages Pumping Lemma Example

Pumping the even a ’s, odd b’s language

Claim: L satisfies pumping lemma with pumping length p = 4.

Proof:

Consider any string s of length at least 4, and write s = tu
where |t | = 4

▶ Case 1: t has an even number of a ’s and an even number of b’s.
Then we can set x = ε, y = t , z = u.

▶ Case 2: t has 3 a ’s and 1 b. Then we can set y = aa.

▶ Case 3: t has 3 b’s and 1 a. Then we can set y = bb.

▶ So L satisfies the pumping lemma with pumping length p = 4.

Q: Can the Pumping Lemma be used to prove that L is regular?
That is, does “Pumpable” ⇒ Regular?
Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 51 / 58

Non-Regular Languages Using the Pumping Lemma

Use PL to Show Languages are NOT Regular

Claim: L = {anbn : n ≥ 0} = {ε, ab, aabb, aaabbb, . . .} is not regular.

Proof by contradiction:

▶ Suppose that L is regular.

▶ So L has some pumping length p > 0.

▶ Consider the string s = apbp . Since |s| = 2p > p, we can write
s = xyz for some strings x , y , z as specified by the lemma.

▶ Claim: No matter how s is partitioned into xyz with y ̸= ε,
we have xy2z /∈ L.

▶ This violates the conclusion of the pumping lemma, so our
assumption that L is regular must have been false.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 52 / 58

Non-Regular Languages Using the Pumping Lemma

Strings of exponential lengths are a nonregular
language

Claim: L = {w : |w | = 2n for some n ≥ 0} is not regular.

Proof:

▶ Suppose L satisfies the pumping lemma with pumping length p.

▶ Choose any string s ∈ L of length greater than p, say |s| = 2n .
By pumping lemma, write s = xyz .

▶ Let |y | = k . Then 2n − k , 2n , 2n + k , 2n + 2 · k , . . . are all powers of
two.

▶ This is impossible. QED.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 53 / 58

Non-Regular Languages Using the Pumping Lemma

Strings of exponential lengths are a nonregular
language

Claim: L = {w : |w | = 2n for some n ≥ 0} is not regular.

Proof:

▶ Suppose L satisfies the pumping lemma with pumping length p.

▶ Choose any string s ∈ L of length greater than p, say |s| = 2n .
By pumping lemma, write s = xyz .

▶ Let |y | = k . Then 2n − k , 2n , 2n + k , 2n + 2 · k , . . . are all powers of
two.

▶ This is impossible. QED.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 53 / 58

Non-Regular Languages Using the Pumping Lemma

“Regular Languages Can’t Do Unbounded Counting”

Claim: L = {w : w has the same number of a ’s and b’s} is not regular.

Proof #1:

▶ Use pumping lemma on s = apbp with |xy | ≤ p condition.

Proof #2:

▶ If L were regular, then L ∩ a∗b∗ would also be regular.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 54 / 58

Non-Regular Languages Using the Pumping Lemma

“Regular Languages Can’t Do Unbounded Counting”

Claim: L = {w : w has the same number of a ’s and b’s} is not regular.

Proof #1:

▶ Use pumping lemma on s = apbp with |xy | ≤ p condition.

Proof #2:

▶ If L were regular, then L ∩ a∗b∗ would also be regular.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 54 / 58

Non-Regular Languages Regular Languages Revisited

Reprise on Regular Languages

Which of the following are necessarily regular?

▶ A finite language

▶ A union of a finite number of regular languages

▶ {x : x ∈ L1 and x /∈ L2}, L1 and L2 are both regular

▶ A subset of a regular language

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 55 / 58

Non-Regular Languages State Minimization

What Happens During the Transformations?

▶ NFA → DFA

▶ DFA → Regular Expression

▶ Regular Expression → NFA

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 56 / 58

Non-Regular Languages State Minimization

Minimizing DFAs

Many different DFAs accept the same language. But there is a
smallest one—and we can find it!

▶ Let M be a DFA

▶ Say that states p, q of M are distinguishable if there is a
string w such that exactly one of δ∗(p,w) and δ∗(q ,w) is final.

▶ Start by dividing the states of M into two equivalence classes:
the final and non-final states.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 57 / 58

Non-Regular Languages State Minimization

Minimizing DFAs, continued

▶ Break up the equivalence classes according to this rule: If p, q are
in the same equivalence class but δ(p, σ) and δ(q , σ) are not
equivalent for some σ ∈ Σ, then p and q must be separated into
different equivalence classes.

▶ When all the states that must be separated have been found, form
a new and finer equivalence relation.

▶ Repeat.

▶ How do we know that this process stops?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 58 / 58

	Finite Automata
	Deterministic Finite Automata
	DFA Examples
	Computation on DFAs
	Nondeterministic Finite Automata
	Computation on NFAs

	NFAs and DFAs Closure Properties
	NFAs vs. DFAs
	The Subset Construction
	Closure Properties
	Efficiency of NFAs vs. DFAs
	Proving Efficiency of NFAs

	Regular Expressions
	Defining Regular Expressions
	Regular Expression Semantics
	Relaxing the Notation
	Examples of Regular Expressions
	Regular Expressions and Finite Automata
	Constructing REs from FAs

	Non-Regular Languages
	A Non-Regular Language
	The Pumping Lemma
	Proving the Pumping Lemma
	Pumping Lemma Example
	Using the Pumping Lemma
	Regular Languages Revisited
	State Minimization

