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Finite Automata

Finite Automata

Reading: Sipser §1.1 and §1.2.
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Finite Automata Deterministic Finite Automata

Deterministic Finite Automata (DFAs)

Example: Home Stereo

▶ P = power button (ON/OFF)

▶ S = source button (CD/Radio/TV), only works when stereo is ON,
but source remembered when stereo is OFF.

▶ Starts OFF, in CD mode

▶ A computational problem: does a given sequence of button
presses w ∈ {P ,S}∗ leave the system with the radio on?
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Finite Automata Deterministic Finite Automata

Formal Definition of a DFA

▶ A DFA M is a 5-tuple (Q ,Σ, δ, q0,F )

Q : Finite set of states
Σ : Alphabet
δ : Transition function, Q × Σ → Q
q0 : Start state, q0 ∈ Q
F : Accept (or final) states, F ⊆ Q

▶ If δ(p, σ) = q ,

then if M is in state p and reads symbol σ ∈ Σ

then M enters state q (while moving to next input symbol)

▶ Home Stereo example: (in class exercise, define
M = (Q ,Σ, δ, q0,F ), then draw state machine representation.)
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Finite Automata Deterministic Finite Automata

Another Visualization

1

2

3

4

a b b a b a

Finite-state control changes
state depending on:

� current state

� next symbol

Input tape

Start state marked with <Reading head
moves left to
right, one square
at a time Double-circled states

are accepting or final
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Finite Automata Deterministic Finite Automata

Accepting Strings

M accepts string X if

▶ After starting M in the start (initial) state with head on first square,

▶ when all of X has been read,

▶ M winds up in a final state.
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Finite Automata DFA Examples

Examples

▶ Bounded Counting: A DFA for

{x |x has an even # of a ’s and an odd # of b’s}

q0 q1

q2 q3

a

a

bb

a

a

bb

Transition
function δ:

a b

q0 q1 q2
q1 q0 q3
q2 q3 q0
q3 q2 q1

i.e. δ(q0, a) = q1,
etc.

= start state = final state

Q = {q0, q1, q2, q3} Σ = {a, b} F = {q2}
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Finite Automata DFA Examples

Another Example, to work out together

▶ Pattern Recognition: A DFA that accepts
{x |x has aab as a substring}.
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Finite Automata Computation on DFAs

Formal Definition of Computation

M = (Q ,Σ, δ, q0,F ) accepts w = w1w2 · · ·wn ∈ Σ∗

(where each wi ∈ Σ) if there exist r0, . . . , rn ∈ Q such that

1. r0 = q0,

2. δ(ri ,wi+1) = ri+1 for each i = 0, . . . ,n − 1 and

3. rn ∈ F .

The language recognized (or accepted) by M , denoted L(M ),
is the set of all strings accepted by M .
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Finite Automata Computation on DFAs

Definition of Regular Languages

Definition 1.16 A language is called a regular language if some finite
automaton recognizes it.
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Finite Automata Computation on DFAs

Transition function on an entire string

More formal (not necessary for us, but notation sometimes useful):

▶ Inductively define δ∗ : Q × Σ∗ → Q by δ∗(q , ε) = q ,
δ∗(q ,wσ) = δ(δ∗(q ,w), σ).

▶ Intuitively, δ∗(q ,w) =
“state reached after starting in q and reading the string w .”

▶ M accepts w if δ∗(q0,w) ∈ F .

Determinism: Given M and w , the states r0, . . . , rn are uniquely
determined. Or in other words, δ∗(q ,w) is well defined for any q and w :
There is precisely one state to which w “drives” M if it is started in a
given state.
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Finite Automata Nondeterministic Finite Automata

The impulse for nondeterminism

A language for which it is hard to design a DFA:

{x1x2 · · · xk |k ≥ 0 and each xi ∈ {aab, aaba, aaa}}

But it is easy to imagine a “device” to accept this language if there
sometimes can be several possible transitions!

a a

ba

a

a

b

a

a

a

a a

a

a

b
b

a a b
a

ε

a
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Finite Automata Nondeterministic Finite Automata

Nondeterministic Finite Automata

An NFA is a 5-tuple (Q ,Σ, δ, q0,F ), where

▶ Q ,Σ, q0,F are as for DFAs

▶ δ : Q × (Σ ∪ {ε}) → P(Q)

When in state p reading symbol σ, can go to any state q in
the set δ(p, σ).

▶ there may be more than one such q , or

▶ there may be none (in case δ(p, σ) = ∅).

Can “jump” from p to any state in δ(p, ε) without moving the input head.
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Finite Automata Computation on NFAs

Computations by an NFA

N = (Q ,Σ, δ, q0,F ) accepts w ∈ Σ∗ if we can write w = y1y2 . . . ym
where each yi ∈ Σ ∪ {ε} and there exist r0, . . . , rm ∈ Q such that

1. r0 = q0,

2. ri+1 ∈ δ(ri , yi+1) for each i = 0, . . . ,m − 1, and

3. rm ∈ F .

Nondeterminism: Given N and w , the states r0, . . . , rm are not
necessarily determined.
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Finite Automata Computation on NFAs

Example of an NFA

N :
q0 q1 q2 q3a a b

a

a

b

N = ({q0, q1, q2, q3}, {a, b}, δ, q0, {q0}), where δ is given by:

a b ε

q0 {q1} ∅ ∅
q1 {q2} ∅ ∅
q2 {q0} {q0, q3} ∅
q3 {q0} ∅ ∅

Work out the tree of all possible computations on aabaab
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Finite Automata Computation on NFAs

How to simulate NFAs?

▶ NFA accepts w if there is at least one accepting computational
path on input w .

▶ But the number of paths may grow exponentially with
the length of w !

▶ Can exponential search be avoided?
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NFAs and DFAs Closure Properties

NFAs and DFAs Closure Properties

Reading: Sipser §1.2.
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NFAs and DFAs Closure Properties NFAs vs. DFAs

NFAs vs. DFAs

NFAs seem more powerful than DFAs. Are they?

Theorem 1.39: For every NFA N , there exists a DFA M such that
L(M ) = L(N ).

Proof Outline: Given any NFA N , to construct a DFA M such that
L(M ) = L(N ):

▶ Have the DFA keep track, at all times, of all possible states the
NFA could be in after reading the same initial part of the input
string.

▶ I.e., the states of M are sets of states of N , and δ∗M (R,w) is the
set of all states N could reach after reading w , starting from a
state in R.
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NFAs and DFAs Closure Properties The Subset Construction

Example of the SUBSET CONSTRUCTION

NFA N for {x1x2 · · · xk |k ≥ 0 and each xi ∈ {aab, aaba, aaa}}.

N :
0 1 2 3

a a b

a

a

b

N starts in state 0 so we will construct a DFA M starting in state {0}.

Here it is:

a a b a a a
b

a a

b

b

a

b

0 1 2 03 01 12 02

∅

All other transitions are
to the “dead state” ∅.
The other states are
unreachable, though
technically must be
defined. Final states
are all those containing
0, the final state of N .
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NFAs and DFAs Closure Properties The Subset Construction

Formal Construction of DFA M from
NFA N = (Q ,Σ, δ, q0,F )

On the assumption that δ(p, ε) = ∅ for all states p.
(i.e., we assume no ε-transitions, just to simplify things a bit)

M = (Q ′,Σ, δ′, q ′0,F
′) where

Q ′ = P(Q)
q ′0 = {q0}
F ′ = {R ⊆ Q |R ∩ F ̸= ∅} (that is, R ∈ Q ′)

δ′(R, σ) = {q ∈ Q |q ∈ δ(r , σ) for some r ∈ R}
=

⋃
r∈R

δ(r , σ)
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NFAs and DFAs Closure Properties The Subset Construction

Proving that the construction works

Claim: For every string w , running M on input w ends in the state
{q ∈ Q | some computation of N on input w ends in state q}.

Pf: By induction on |w |.

Can be extended to work even for NFAs with ε-transitions.

“THE SUBSET CONSTRUCTION”
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NFAs and DFAs Closure Properties Closure Properties

Closure Properties

Theorem: The class of regular languages is closed under:

▶ (1.25/1.45) Union: L1 ∪ L2

▶ (1.26/1.47) Concatenation: L1 ◦ L2 = {xy |x ∈ L1 and y ∈ L2}
▶ (1.49) Kleene ∗: L∗

1 = {x1x2 · · · xk |k ≥ 0 and each xi ∈ L1}
▶ (P1.14) Complement: L1

▶ (1.26) Intersection: L1 ∩ L2

Union: If L1 and L2 are regular, then L1 ∪ L2 is regular.

ε

ε

M1

M2

M

⇒

M has the states and transitions of
M1 and M2 plus a new start state
ε-transitioning to the old start
states.
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NFAs and DFAs Closure Properties Closure Properties

Concatenation, Kleene∗, Complementation

Concatenation:
L(M ) = L(M1) ◦ L(M2)

M1

M2

M

⇒

ε ε

Kleene∗:
L(M ) = L(M1)

∗

ε
ε

ε

M1 M

⇒

Complement:
L(M ) = L(M1)

M1 M

⇒

▶ Assume M is
deterministic
(or make it so)

▶ Invert final/
nonfinal states
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NFAs and DFAs Closure Properties Closure Properties

Closure under intersection

Intersection: S ∩ T = S ∪ T

S T

= S

= T

Hence closure under union
and complement implies
closure under intersection.
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NFAs and DFAs Closure Properties Closure Properties

A more constructive and direct proof of closure under
intersection

Better way (“Cross Product Construction”):

From DFAs M1 = (Q1,Σ, δ1, q1,F1) and M2 = (Q2,Σ, δ2, q2,F2),
construct M = (Q ,Σ, δ, q0,F ):

Q = Q1 ×Q2

F = F1 × F2

δ(⟨r1, r2⟩, σ) = ⟨δ1(r1, σ), δ2(r2, σ)⟩
q0 = ⟨q1, q2⟩

Then L(M1) ∩ L(M2) = L(M )
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NFAs and DFAs Closure Properties Efficiency of NFAs vs. DFAs

Some Efficiency Considerations

The subset construction shows that any n-state NFA can be
implemented as a 2n -state DFA.

NFA States DFA States
4 16
10 1024
100 2100

1000 21000 ≫ the number of particles in the universe

How to implement this construction on an ordinary digital computer?

NFA states
1, . . . ,n

DFA state bit vector
0 1 1 0 · · · 1
1 2 n
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NFAs and DFAs Closure Properties Efficiency of NFAs vs. DFAs

Is this construction the best we can do?

Could there be a construction that always produces an n2 state DFA
for example?

Theorem: For every n ≥ 1, there is a language Ln such that

1. There is an (n + 1)-state NFA recognizing Ln .

2. There is no DFA recognizing Ln with fewer than 2n states.

Conclusion: For finite automata, nondeterminism provides an
exponential savings over determinism (in the worst case).
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NFAs and DFAs Closure Properties Proving Efficiency of NFAs

Proving that exponential blowup is sometimes
unavoidable

(Could there be a construction that always produces a 2n state DFA for
example?)

Consider (for some fixed n = 17, say)

Ln = {w ∈ {a, b}∗ : the nth symbol from the right end of w is an a}

▶ There is an (n + 1)-state NFA that accepts Ln .

▶ There is no DFA that accepts Ln and has < 2n states
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NFAs and DFAs Closure Properties Proving Efficiency of NFAs

A “Fooling Argument”

▶ Suppose a DFA M has < 2n states, and L(M ) = Ln

▶ There are 2n strings of length n.

▶ By the pigeonhole principle, two such strings x ̸= y must drive M
to the same state q .

▶ Suppose x and y differ at the k th position from the right end (one
has a, the other has b)
(k = 1, 2, . . . ,or n)

▶ Then M must treat xan−k and yan−k identically (accept both or
reject both). These strings differ at position n from the right end.

▶ So L(M ) ̸= Ln , contradiction. QED.
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NFAs and DFAs Closure Properties Proving Efficiency of NFAs

Illustration of the fooling argument

a

b

x
̸=
y

M is in state q0 M is in state q

n

k

a a a

b a a

xan−k

yan−k

M in state q0 M in state q

Different symbols n
positions from right

M in same state p

n

▶ x and y are different strings
(so there is a position k where one has a and the other has b)

▶ But both strings drive M from s to the same state q
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NFAs and DFAs Closure Properties Proving Efficiency of NFAs

What the argument proves

▶ This shows that the subset construction is within a factor of 2 of
being optimal

▶ In fact it is optimal, i.e., as good as we can do in the worst case

▶ In many cases, the “generate-states-as-needed” method yields a
DFA with ≪ 2n states

(e.g. if the NFA was deterministic to begin with!)
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Regular Expressions

Regular Expressions

Reading: Sipser §1.3.
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Regular Expressions Defining Regular Expressions

Regular Expressions

▶ Let Σ = {a, b}. The regular expressions over Σ are certain
expressions formed using the symbols {a, b, (, ), ε, ∅,∪, ◦, ∗}

▶ We use red for the strings under discussion (the object
language) and black for the ordinary notation we are using for
doing mathematics (the metalanguage).

▶ Construction Rules (= inductive/recursive definition):

1. a, b, ε, ∅ are regular expressions

2. If R1 and R2 are RE’s, then so are (R1◦R2), (R1∪R2), and (R∗
1).

▶ Examples:
▶ (a ◦ b)
▶ ((((a ◦ (b∗)) ◦ c) ∪ ((b∗) ◦ a))∗)
▶ (∅∗)
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Regular Expressions Regular Expression Semantics

What REs Do

▶ Regular expressions (which are strings) represent languages
(which are sets of strings), via the function L:

(1) L(a) = {a}
(2) L(b) = {b}
(3) L(ε) = {ε}
(4) L(∅) = ∅
(5) L((R1◦R2)) = L(R1) ◦ L(R2)
(6) L((R1∪R2)) = L(R1) ∪ L(R2)
(7) L((R∗

1)) = L(R1)
∗

▶ Example:
L(((a∗) ◦ (b∗))) = {a}∗ ◦ {b}∗

▶ L(·) is called the semantics of the expression.
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Regular Expressions Relaxing the Notation

Syntactic Shorthand

▶ Drop the distinction between red and black, between object
language and metalanguage

▶ Omit ◦ symbol and many parentheses

▶ Union and concatenation of languages are associative

i.e., for any languages L1,L2,L3:

(L1L2)L3 = L1(L2L3) and (L1 ∪ L2) ∪ L3 = L1 ∪ (L2 ∪ L3)

so we can write just R1R2R3 and R1 ∪ R2 ∪ R3

For example, the following are all equivalent:

((ab)c) (a(bc)) abc

▶ Equivalent means “same semantics, maybe different syntax”
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Regular Expressions Relaxing the Notation

More syntactic sugar

▶ By convention, ∗ takes precedence over ◦, which takes
precedence over ∪.

So a ∪ bc∗ is equivalent to (a ∪ (b ◦ (c∗)))

▶ Σ is shorthand for a ∪ b (or the analogous RE for whatever
alphabet is in use).
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Regular Expressions Examples of Regular Expressions

Examples of Regular Languages

Strings ending in a = Σ∗a

Strings containing the substring abaab = ?

Strings of even length = (aa ∪ ab ∪ ba ∪ bb)∗

Strings with even # of a ’s = (b ∪ ab∗a)∗

= b∗(ab∗ab∗)∗

Strings with ≤ two a ’s = ?

Strings of form x1x2 . . . xk , k ≥ 0, each xi ∈ {aab, aaba, aaa} = ?

Decimal numerals, no leading zeros
= 0 ∪ ((1 ∪ . . . ∪ 9)(0 ∪ . . . ∪ 9)∗)

All strings with an even # of a ’s and an even # of b’s
= (b ∪ ab∗a)∗ ∩ (a ∪ ba∗b)∗ but this isn’t a regular expression
= (aa ∪ bb)∗((ab ∪ ba)(aa ∪ bb)∗(ab ∪ ba)(aa ∪ bb)∗)∗
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Strings with even # of a ’s = (b ∪ ab∗a)∗

= b∗(ab∗ab∗)∗

Strings with ≤ two a ’s = ?

Strings of form x1x2 . . . xk , k ≥ 0, each xi ∈ {aab, aaba, aaa} = ?

Decimal numerals, no leading zeros
= 0 ∪ ((1 ∪ . . . ∪ 9)(0 ∪ . . . ∪ 9)∗)

All strings with an even # of a ’s and an even # of b’s
= (b ∪ ab∗a)∗ ∩ (a ∪ ba∗b)∗ but this isn’t a regular expression
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Regular Expressions Regular Expressions and Finite Automata

Equivalence of REs and FAs

Recall: we call a language regular if there is a finite automaton that
recognizes it.

Theorem: For every regular expression R, L(R) is regular.

Proof (going back to hyper-formality for a moment):

Induct on the construction of regular expressions
(“structural induction”).

Base Case: R is a, b, ε, or ∅

σ

accepts {σ} accepts ∅ accepts {ε}
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Regular Expressions Regular Expressions and Finite Automata

Equivalence of REs and FAs, continued

Inductive Step: If R1 and R2 are REs and L(R1) and L(R2) are
regular (inductive hyp.), then so are:

L((R1◦R2)) = L(R1) ◦ L(R2)
L((R1∪R2)) = L(R1) ∪ L(R2)

L((R∗
1)) = L(R1)

∗

(By the closure properties of the regular languages).

Proof is constructive (actually produces the equivalent NFA, not just
proves its existence).
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Regular Expressions Regular Expressions and Finite Automata

Example conversion of a RE to a FA

(a ∪ ε)(aa ∪ bb)∗
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Regular Expressions Regular Expressions and Finite Automata

The Other Direction

Theorem: For every regular language L, there is a
regular expression R such that L(R) = L.

Proof:

Define generalized NFAs (GNFAs) (of interest only for this proof)

▶ Transitions labelled by regular expressions (rather than symbols).

▶ One start state qstart and only one accept state qaccept.

▶ Exactly one transition from qi to qj for every two states
qi ̸= qaccept and qj ̸= qstart (including self-loops).
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Regular Expressions Constructing REs from FAs

Steps toward the proof

Lemma: For every NFA N , there is an equivalent GNFA G .

▶ Add new start state, new accept state. Transitions?

▶ If multiple transitions between two states, combine. How?

▶ If no transition between two states, add one. With what transition?

Lemma: For every GNFA G , there is an equivalent RE R.

▶ By induction on the number of states k of G .

▶ Base case: k = 2. Set R to be the label of the transition
from qstart to qaccept.
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Regular Expressions Constructing REs from FAs

Ripping and repairing GNFAs to reduce the number of
states

▶ Inductive Hypothesis: Suppose every GNFA G of k or fewer
states has an equivalent RE (where k ≥ 2).

▶ Induction Step: Given a (k + 1)-state GNFA G , we will construct
an equivalent k -state GNFA G ′.

Rip: Remove a state qr (other than qstart, qaccept).

Repair: For every two states qi /∈ {qaccept, qr}, qj /∈ {qstart, qr},
let Ri ,j , Ri ,r , Rr ,r , Rr ,j be REs on transitions
qi → qj , qi → qr , qr → qr and qr → qj in G , respectively,

In G ′, put RE Ri ,j ∪ Ri ,rR
∗
r ,rRr ,j on transition qi → qj .

Argue that L(G ′) = L(G), which is regular by IH.

Also constructive.
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Regular Expressions Constructing REs from FAs

Example conversion of an NFA to a RE

An NFA accepting strings with an even number of a ’s with Σ = {a, b}.
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Non-Regular Languages

Non-Regular Languages

Reading: Sipser, §1.4.
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Non-Regular Languages A Non-Regular Language

Goal: Explicit Non-Regular Languages

It appears that a language such as

L = {x ∈ Σ∗ : |x | = 2n for some n ≥ 0}
= {a, b, aa, ab, ba, bb, aaaa, . . . , bbbb, aaaaaaaa, . . .}

can’t be regular because the “gaps” in the set of possible lengths
become arbitrarily large, and no DFA could keep track of them.

But this isn’t a proof!

Approach:

1. Prove some general property P of all regular languages.

2. Show that L does not have P .
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Non-Regular Languages The Pumping Lemma

Pumping Lemma (Basic Version)

If L is regular, then there is a number p (the pumping length)
such that

every string s ∈ L of length at least p
can be divided into s = xyz , where y ̸= ε and

for every n ≥ 0, xynz ∈ L.

n = 1

n = 0

n = 2

· · ·

x y z

x z

x y y z

▶ Why is the part about p needed?

▶ Why is the part about y ̸= ε needed?
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Non-Regular Languages Proving the Pumping Lemma

Proof of Pumping Lemma

(Another fooling argument)

▶ Since L is regular, there is a DFA M accepting L.

▶ Let p = # states in M .

▶ Suppose s ∈ L has length l ≥ p.

▶ M passed through a sequence of l + 1 > p states while
accepting s (including the first and last states): say, q0, . . . , ql .

▶ Two of these states must be the same: say, qi = qj where i < j

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 48 / 58



Non-Regular Languages Proving the Pumping Lemma

Pumping, continued

▶ Thus, we can break s into x , y , z where y ̸= ε (though x , z may
equal ε):

x y z

M in state qi M in state qj = qi

▶ If more copies of y are inserted, M “can’t tell the difference,”
i.e., the state entering y is the same as the state leaving it.

▶ So since xyz ∈ L, then xynz ∈ L for all n.

Proof also shows:

▶ We can take p = # states in smallest DFA recognizing L.

▶ Can guarantee division s = xyz satisfies |xy | ≤ p (or |yz | ≤ p).
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Non-Regular Languages Pumping Lemma Example

Pumping Lemma Example

▶ Consider

L = {x : x has an even # of a ’s and an odd # of b’s}

▶ Since L is regular, pumping lemma holds.

(i.e., every sufficiently long string s in L is “pumpable”)

▶ For example, if s = aab, we can write x = ε, y = aa, and z = b.
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Non-Regular Languages Pumping Lemma Example

Pumping the even a ’s, odd b’s language

Claim: L satisfies pumping lemma with pumping length p = 4.

Proof:

Consider any string s of length at least 4, and write s = tu
where |t | = 4

▶ Case 1: t has an even number of a ’s and an even number of b’s.
Then we can set x = ε, y = t , z = u.

▶ Case 2: t has 3 a ’s and 1 b. Then we can set y = aa.

▶ Case 3: t has 3 b’s and 1 a. Then we can set y = bb.

▶ So L satisfies the pumping lemma with pumping length p = 4.

Q: Can the Pumping Lemma be used to prove that L is regular?
That is, does “Pumpable” ⇒ Regular?
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Non-Regular Languages Using the Pumping Lemma

Use PL to Show Languages are NOT Regular

Claim: L = {anbn : n ≥ 0} = {ε, ab, aabb, aaabbb, . . .} is not regular.

Proof by contradiction:

▶ Suppose that L is regular.

▶ So L has some pumping length p > 0.

▶ Consider the string s = apbp . Since |s| = 2p > p, we can write
s = xyz for some strings x , y , z as specified by the lemma.

▶ Claim: No matter how s is partitioned into xyz with y ̸= ε,
we have xy2z /∈ L.

▶ This violates the conclusion of the pumping lemma, so our
assumption that L is regular must have been false.
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Non-Regular Languages Using the Pumping Lemma

Strings of exponential lengths are a nonregular
language

Claim: L = {w : |w | = 2n for some n ≥ 0} is not regular.

Proof:

▶ Suppose L satisfies the pumping lemma with pumping length p.

▶ Choose any string s ∈ L of length greater than p, say |s| = 2n .
By pumping lemma, write s = xyz .

▶ Let |y | = k . Then 2n − k , 2n , 2n + k , 2n + 2 · k , . . . are all powers of
two.

▶ This is impossible. QED.
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Non-Regular Languages Using the Pumping Lemma

“Regular Languages Can’t Do Unbounded Counting”

Claim: L = {w : w has the same number of a ’s and b’s} is not regular.

Proof #1:

▶ Use pumping lemma on s = apbp with |xy | ≤ p condition.

Proof #2:

▶ If L were regular, then L ∩ a∗b∗ would also be regular.
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Non-Regular Languages Regular Languages Revisited

Reprise on Regular Languages

Which of the following are necessarily regular?

▶ A finite language

▶ A union of a finite number of regular languages

▶ {x : x ∈ L1 and x /∈ L2}, L1 and L2 are both regular

▶ A subset of a regular language
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Non-Regular Languages State Minimization

What Happens During the Transformations?

▶ NFA → DFA

▶ DFA → Regular Expression

▶ Regular Expression → NFA
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Non-Regular Languages State Minimization

Minimizing DFAs

Many different DFAs accept the same language. But there is a
smallest one—and we can find it!

▶ Let M be a DFA

▶ Say that states p, q of M are distinguishable if there is a
string w such that exactly one of δ∗(p,w) and δ∗(q ,w) is final.

▶ Start by dividing the states of M into two equivalence classes:
the final and non-final states.
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Non-Regular Languages State Minimization

Minimizing DFAs, continued

▶ Break up the equivalence classes according to this rule: If p, q are
in the same equivalence class but δ(p, σ) and δ(q , σ) are not
equivalent for some σ ∈ Σ, then p and q must be separated into
different equivalence classes.

▶ When all the states that must be separated have been found, form
a new and finer equivalence relation.

▶ Repeat.

▶ How do we know that this process stops?
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