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Summary

Context-free Languages
CFG, PDA

Regular Languages

DFA, NFA, RE PL for| CFL

PL for|RL

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 2/69



Context-free Grammars

Context-free Grammars

Reading: Sipser §2.1 Context-free Grammars
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Context-free Grammars Formal Definitions

Formal Definitions for CFGs

» ACFG G = (V,%,R,S)
V' = Finite set of variables (or nonterminals)
> = The alphabet, a finite set of terminals (V' N2 = §).

R = Afinite set of rules, each of the form A — w
forAe Vandw e (VUX)".

S = The start variable, S ¢ V
eg. ({S},{a,b},{S — aSb,S — ¢}, S5)
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Context-free Grammars Formal Definitions

Formal Definitions for CFGs

» ACFG G = (V,%,R,S)
V' = Finite set of variables (or nonterminals)
> = The alphabet, a finite set of terminals (V' N2 = §).

R = Afinite set of rules, each of the form A — w
forAe Vandw e (VUX)".

S = The start variable, S ¢ V
eg. ({S},{a,b},{S — aSb,S — ¢}, S5)
» Derivations: For o, 8 € (V U X)* (strings of terminals and nonterminals),

a = f (“‘ayields 5”) if « = uAv, 8 = uwv, for some u, v € (V UX)*, and
R contains rule A — w.

a = 3 (“a derives 3”) if there is a sequence ay, .. ., ay, for k > 0 such that
a0 =a,ar =pF,and a;—1 = a; foreach i =1,... k.
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Context-free Grammars Formal Definitions

Definition of Context-free Language

» The set of strings that can be derived from a context-free grammar
is the language generated by the grammar.
L(G) = {w|w can be derived by G }
L(G) = {w € ¥* : § = w} (strings of terminals only!)

» Any language that can be generated by a context-free grammar is
a context-free language (CFL).
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Example CFG G,

> G1:
A — 0A1

A— B
B — #
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Example CFG G,

> G1:
A — 0A1

A— B
B — #

» Variables? Terminals? Rules? Start variable?
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Example CFG G,

> G1:
A — 0A1

A— B
B — #

» Variables? Terminals? Rules? Start variable?

» Alternate Gi:
A — 0A1|B

B—#
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Example CFG G,

> G1:
A — 0A1

A— B
B — #
» Variables? Terminals? Rules? Start variable?

» Alternate Gi:
A — 0A1|B

B—#

» Strings derived from G17?
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Example CFG G,

> G1:
A — 0A1

A— B
B — #

» Variables? Terminals? Rules? Start variable?

» Alternate Gi:
A — 0A1|B

B—#

» Strings derived from G17?
4, 041, 00#11, 000#111, ...
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Example CFG G,

> G1:
A — 0A1

A— B
B — #
» Variables? Terminals? Rules? Start variable?

» Alternate Gi:
A — 0A1|B

B—#

» Strings derived from G17?
4, 041, 00#11, 000#111, ...

> L(Gy) =7
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Example CFG G,

> G1:
A — 0A1

A— B
B — #

» Variables? Terminals? Rules? Start variable?

» Alternate Gi:
A — 0A1|B

B — #
» Strings derived from G17?
4. 041, 00411, 0004111, ...
> L(G)="7
{0"#1%[n > 0}
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Context-free Grammars Parse Trees

Parse Trees

> A parse tree is a pictorial representation of a single derivation.

» The parse tree for w = 000#111, derived from Gj.

G1:

A — 041
A— B
B — #

HF———— e —n
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Context-free Grammars Examples

More examples of CFGs

» Arithmetic Expressions
Go:
EXPR — TERM | EXPR + TERM
TERM — TERM « FACTOR | FACTOR
FACTOR — (EXPR) |z |y

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024
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Context-free Grammars Examples

More examples of CFGs

> Arithmetic Expressions

GQ:
EXPR — TERM | EXPR + TERM

TERM — TERM « FACTOR | FACTOR
FACTOR — (EXPR) |z |y

» Derived strings?
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Context-free Grammars Examples

More examples of CFGs

> Arithmetic Expressions

GQ:
EXPR — TERM | EXPR + TERM

TERM — TERM « FACTOR | FACTOR
FACTOR — (EXPR) |z |y

» Derived strings?
> L(GQ)?
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Context-free Grammars Examples

More examples of CFGs

> Arithmetic Expressions

GQ:
EXPR — TERM | EXPR + TERM

TERM — TERM « FACTOR | FACTOR
FACTOR — (EXPR) |z |y

» Derived strings?
> L(Go)?

> Parse tree for some string?
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Context-free Grammars Examples

More examples of CFGs

> L(Gs) ={z € {(,)}* : parentheses in z are properly ‘balanced’}.
Gy =7

» L(Gy) ={z € {a,b}* : z has the same # of a’s and b’s}.
Gy =7
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Context-free Grammars Chomsky Normal Form

Chomsky Normal Form

Def: A grammar is in Chomsky normal form if

» the only possible rule with ¢ as the RHS is S — ¢
(Of course, this rule occurs iff ¢ € L(G))

» Every other rule is of the form

1. X > YZ
where X, Y, Z are variables

2. X >0
where X is a variable and o is a single terminal symbol
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Transforming a CFG into Chomsky Normal Form

Definitions:

» c-rule: one of the form X — ¢
» Long Rule: one of the form X — « where |a| > 2

» Unit Rule: one of the form X — Y
where X, Y € V

» Terminal-Generating Rule: one of the form X — «
where a ¢ V* and |a| > 1 (« has at least one terminal)
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Transforming a CFG into Chomsky Normal Form
Eliminate non-Chomsky-Normal-Form Rules in Order:

1. All e-rules, except maybe S — ¢
2. All unit rules
3. All long rules

4. All terminal-generating rules

Note: while eliminating rules of type j, we make sure not to reintroduce
rules of type i < j.
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Eliminating e-Rules

0. Ensure start variable does not appear on the RHS of any rule
(by adding new start variable with rule S — 5,4 if necessary).

1. To eliminate e-rules, repeatedly do the following:
a. Pick ae-rule Y — ¢ and remove it.

b. Given arule X — «, where « contains n occurrences of Y,
replace it with 2™ rules in which 0, ..., n occurrences are
replaced by . (Do not add X — ¢ if previously removed.)

e.g.

X = aYZbY =

(Why does this terminate?)
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Eliminating e-Rules

0. Ensure start variable does not appear on the RHS of any rule
(by adding new start variable with rule S — 5,4 if necessary).

1. To eliminate e-rules, repeatedly do the following:
a. Pick ae-rule Y — ¢ and remove it.

b. Given arule X — «, where « contains n occurrences of Y,

replace it with 2™ rules in which 0, ..., n occurrences are
replaced by . (Do not add X — ¢ if previously removed.)
e.g.
X = aYZbY
X — aZbY
X = aYZbY = X = aY7
X — aZb

(Why does this terminate?)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 13/69



Eliminating Unit and Long Rules

2. To eliminate unit rules, repeatedly do the following:
a. Pick a unitrule A — B and remove it.

b. For every rule B — u, add rule A — u unless this is a unit rule that
was previously removed.

3. To eliminate long rules, repeatedly do the following:
a. Remove alongrule A — wyus - - - ux, where each u; € V U X and

k> 3.

b. Replace withrules A — u1 A1, A1 — u Ao, . .. JAp_o — up_qug,
where 4,, ..., Ay_2 are newly introduced variables used only in
these rules.
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Eliminating Terminal-Generating Rules

4. To eliminate terminal-generating rules:
a. For each terminal « introduce a new nonterminal A.
b. Addtherules A — a

c. “Capitalize” existing rules, e.g.

replace X — aY
with X — AY
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Context-free Grammars Example of Transformation

Example of Transformation to Chomsky Normal Form

Starting grammar:

S — XX
X — aXb|e
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Pushdown Automata

Pushdown Automata

Reading: Sipser §2.2.
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Pushdown Automata

A pushdown automaton = a finite automaton + “pushdown store”.

The pushdown store is a stack of symbols of unlimited size which the
machine can read and alter only at the top.

reading head
(L to R only,
one symbolata ~  _ | a | Stack
time, or stays put)

Input [a[b[bfalbfa]

pushdown store head can push
(add symbols) or pop -
(remove and check symbols)

Transitions of PDA are of form (¢, 0,7) — (¢’,~"), which means:

If in state ¢ with o on the input tape and ~ on top of the stack,

replace v by +' on the stack and enter state ¢’ while advancing the reading
head over o.
Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18/69



Pushdown Automata Pushdown Automata

(Nondeterministic) PDA for “even palindromes”

{ww® : w € {a, b}*}

(¢,a,e) = (¢,a) Pusha’s

(¢,b,e) = (¢,b) andb’s

(q,e,e) — (r,e) switch to other state
(r,ya,a) — (r,e) pop a’s matching input
(r,b,b) — (r,e) pop b’s matching input

So the precondition (g, o,v) means that

» the next |o| symbols (0 or 1) of the input are o and

» the top || symbols (0 or 1) on the stack are ~
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Pushdown Automata Pushdown Automata

(Nondeterministic) PDA for “even palindromes”

{ww® : w € {a, b}*}

(¢,a,e) = (¢,a) Pusha’s

(g,b,e) — (¢, b) andb’s

(q,e,e) — (r,e) switch to other state

( (r,e) pop a’s matching input
( (r,e) pop b’s matching input

m

T,
r,e

T, a,a)

7 b,0) =

Need to test whether stack empty: push $ at beginning and
check at end.

(q0,¢,€) — (4, %)
(r,e,8) — (gr,¢)
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Pushdown Automata Pushdown Automata

Language acceptance with PDAs

A PDA accepts an input string

If there is a computation that starts
> in the start state

» with reading head at the beginning of string

» with the stack empty
and ends
» in a final state

» with all the input consumed
A PDA computation becomes “blocked” (i.e. “dies”) if

» no transition matches both the input and stack
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Pushdown Automata Formal Definition

Formal definition of a PDA

M=(Q,%,T,9,q,F)
() = states
Y = input alphabet
I' = stack alphabet

0 = transition function

Q@ x (XU{e}) x (TU{e}) = P(Q x (T'U{e}))
qo = start state

F = final states
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Computation by a PDA

> M accepts w if we can write w = wy - - - Wy,
where each w;, € ¥ U {e},

and there is a sequence of states g, ..., rp,
and stack strings s, ..., s,, € I'* that satisfy

1. ToquandS()::f.

2. Foreach i, (r;41,7") € 0(ri, wit1,7) Where s; =yt and s; 11 = 't
forsome v, e TU{e} and ¢t € T"*.

3. ry, €F.
» L(M)={we X*: M accepts w}.
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PDA for {w € {a,b}* : #.(w) = #4(w)}
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PDA for {w € {a,b}* : #4.(w) = #4(w)}

Strategy:

> Keep |#4(w) — #p(w)| = n on stack in form of 1"8§.
> Keep the sign of #,(w) — #,(w) in the state:
+ or 0 = state ¢,

— or 0 = state ¢_
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Equivalence of CFGs and PDAs

Thm: The class of languages recognized by PDAs is the CFLs.

I. Forevery CFG G,
there is a PDA M
with L(M) = L(G)

II. For every PDA M,
there is a CFG G
with L(G) = L(M)
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Proof that every CFL is accepted by some PDA

Let G = (V,%,R,S)
We’ll allow a generalized sort of PDA that can push strings onto stack.
E.g. (¢, a,b) ~ (r, cd)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 25/69



Proof that every CFL is accepted by some PDA

Let G =(V,%,R,S)
We’'ll allow a generalized sort of PDA that can push strings onto stack.
E.g., (¢,a,b) — (7, cd)
The corresponding PDA has just 3 states:
gstart ~ Start state
Qloop ~ “Main loop” state

Qaccept ™~ final state

Stack alphabet = VU X U {$}
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CFL = PDA, Continued: The Transitions of the PDA

Transitions:

> 6((]5tart7 g, 5) = {(QIoopa S$)}
“Start by putting S$ on the stack, & go to gjo0p”

» 5(qioop» €, A) = {(1oop, w)} for each rule A — w

“Remove a variable from the top of the stack and replace it with a
corresponding righthand side”

» §(qioops 0, 0) = {(Qioop, )} foreach o € ©

“Pop a terminal symbol from the stack if it matches the next input
symbol”

| 4 6(qloop,€, $) = {(Qacceptvg)}'

“Go to accept state if stack contains only $.”
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Pushdown Automata From a CFG to a PDA

Example

» Consider grammar G with rules {S — aSb, S — ¢}
(so L(G) = {a™b" : n > 0})

» Construct PDA
M = ({QStart; QZoop7 Qaccept}; {a7 b}7 {0,, b; 87 $}7 57 Gstart {Qaccept})

Transition Function 4:

» Derivation S = aSb = aaSbb = aabb

Corresponding Computation:

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27/69



The Dual Bottom-Up CFG — PDA Construction

> (gstart: €5 €) = {(qloop, $)}
“Start by putting $ on the stack, & go to gpep”
» 6(qioops 7€) = {(dioop; o)} foreach o € ¥
“Shift input symbols onto the stack”
> §(dioop: €, W) = {(gioop:s 4) : A — w) is arule of G}

“Reduce right-hand sides on the stack to corresponding left-hand
sides”

» 6(qioop; €, %) = { Gaccept, €)}

“Accept if the stack consists just of S above the bottom-marker”
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Proof that for every PDA M there is a
CFG G such that L(M) = L(G)

» First modify PDA M so that
> Single accept state.
> All accepting computations end with empty stack.

> In every step, push a symbol or pop a symbol but not both.
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Design of the grammar G equivalent to PDA M

» Variables: A,, for every two states p, g of M

» Goal: A,, generates all strings that can take M from p to g,
beginning and ending with an empty stack.

> Rules:
> For all states p, q, 7, Apg = AprArg

> For states p,q,r,sand o, 7 € X,
Ay, — oAt if there is a stack symbol ~
such that é(p, o, ¢) contains (r,~)
and d(s, 7,) contains (g, ¢)

> For every state p, Ay, — ¢

» Start variable: A

Gstart Qaccept
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Pushdown Automata From a PDA to a CFG

Visualizing the Construction

How to generate all possible strings that could be recognized moving
from state p with an empty stack to ¢ with an empty stack? Two cases:

qu — AprArq qu — UATST

ATS
(=)

0,8 =7y T, €

1. If the stack is also empty in some middle state r,
trace the path from p — rthen r — ¢

2. Else if p — r pushes ~ on the stack and s — ¢ pops it back off,
generate o A,T.
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Proof Sketch: the Grammar is Equivalent to the PDA

Claim: 4,, = w if and only if w can take M from p to ¢,
beginning & ending w/empty stack

= Proof by induction on length of derivation

< Proof by induction on length of computation

» Computation of length 0 (base case): Use 4,, — ¢

» Stack empties sometime in middle of computation:
Use A,; — Apr Ay

» Stack does not empty in middle of computation:
Use 4,; = cd AT
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Pushdown Automata From a PDA to a CFG

Context-free Grammars

STOP: End cql.
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Pushdown Automata From a PDA to a CFG

Context-free Grammars

Reading: Sipser §2.1 (except Chomsky Normal Form).
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Pushdown Automata Context-free Grammars

Context-free Grammars

» Originated as abstract model for:
> Structure of natural languages (Chomsky)

> Syntactic specification of programming languages
(Backus-Naur Form)
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Pushdown Automata Context-free Grammars

Context-free Grammars

» Originated as abstract model for:
> Structure of natural languages (Chomsky)

> Syntactic specification of programming languages
(Backus-Naur Form)

> A context-free grammar is a set of generative rules for strings

e.g.
S — aSh

S —e

» A derivation looks like:
S = aSb = aaSbb = aabb
L(G) = {e, ab, aabb, ...} = {a™b" : n > 0}
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Pushdown Automata Context-free Grammars

Equivalent Formalisms

1. Backus-Naur Form (aka BNF, Backus Normal Form)

due to John Backus and Peter Naur

(term) ::= (factor) | (factor) * (term)
| (factor) / (term)

“

” means “or” in the metalanguage = same left-hand side
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Pushdown Automata Context-free Grammars

Equivalent Formalisms

1. Backus-Naur Form (aka BNF, Backus Normal Form)

due to John Backus and Peter Naur

(term) ::= (factor) | (factor) * (term)
| (factor) / (term)

“

” means “or” in the metalanguage = same left-hand side

2. “Railroad Diagrams”

term

© O

factor
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Pushdown Automata Formal Definitions

Formal Definitions for CFGs

» ACFG G = (V,%,R,S)
V' = Finite set of variables (or nonterminals)
¥ = The alphabet, a finite set of terminals (V N2 = 0).

R = Afinite set of rules, each of the form A — w
forAe Vandw e (VUX)".

S = The start variable, a member of V'
e.g. ({S},{a,b},{S — aSb,S — ¢}, 9)
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Pushdown Automata Formal Definitions

Formal Definitions for CFGs

» ACFG G = (V,%,R,S)
V' = Finite set of variables (or nonterminals)
¥ = The alphabet, a finite set of terminals (V N2 = 0).

R = Afinite set of rules, each of the form A — w
forAe Vandw e (VUX)".

S = The start variable, a member of V'
e.g. ({S},{a,b},{S — aSb,S — ¢}, 9)

» Derivations: For «, 3 € (V U X)* (strings of terminals and nonterminals),
a=¢g Bifa=udv, = vwv for some u,v € (VUX)" and rule 4 — w.

a =¢ B (“ayields 3) if there is a sequence a, . . ., oy for k > 0 such that
ao=a,ay=pB,and a;—1 =>¢ a;foreachi=1,..., k.

> L(G)={we ¥ :S =S¢ w} (strings of terminals only!)
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Pushdown Automata Examples

More examples of CFGs

» Arithmetic Expressions

Gl:
E—z|y|ExE|E+E|(E)
GQZ
E—T|E+T
T T+F|F
F—(E)|z|y

Q: Which is preferable? Why?
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Pushdown Automata Examples

More examples of CFGs

» L={x € {(,)}*: parentheses in x are properly ‘balanced’}.

» L={x €{a,b}" : zhasthe same # of a’s and b’s}.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024

39/69



Pushdown Automata Parse Trees

Parse Trees

Derivations in a CFG can be represented by parse trees.

Examples:

Each parse tree corresponds to many derivations, but has unique
leftmost derivation.
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Parsing

Parsing: Given z € L(G), produce a parse tree for z. (Used to
‘interpret’ z. Compilers parse, rather than merely recognize, so they
can assign semantics to expressions in the source language.)

Ambiguity: A grammar is ambiguous if some string has two parse
trees.

Example:
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Pushdown Automata Parse Trees

Context-free Grammars and Automata

What is the fourth term in the analogy:

Regular Languages : Finite Automata
as
Context-free Languages : ?7?7?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024
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Regular Grammars
Hint: There is a special kind of CFGs, the regular grammars, that
generate exactly the regular languages.

A CFG is (right-)regular if any occurrence of a nonterminal on the
RHS of a rule is as the rightmost symbol.

Turning a DFA into an equivalent Regular Grammar

» Variables are states.

» Transition 6(P,0) = R (P —2—(R)
becomes P — o R

» If P is accepting, add rule P — ¢
Example: {z : « has an even # of a’s and an even # of b’s}

Other Direction: Omitted.
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CFL Closure Properties and Non-CF Languages

CFL Closure Properties and Non—Context-Free
Languages

Reading: Sipser §2.3.
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CFL Closure Properties and Non-CF Languages Closure Properties

Closure Properties of CFLs

» Thm: The CFLs are closed under
> Union
> Concatenation
> Kleene *

> Intersection with a regular language
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CFL Closure Properties and Non-CF Languages Closure Properties

Intersection of a CFL and a regular language is CF

Pf sketch: Let L; be CF and L, be regular
Ly = L(My), M; a PDA
Ly = L(Ms,), My a DFA
Q, = state set of M;
()» = state set of M,

Construct a PDA with state set Q1 x @ which keeps track of
computation of both M; and M, on input.
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CFL Closure Properties and Non-CF Languages Closure Properties

Q: Why doesn’t this argument work if M, and M, are
both PDAs?

In fact, the intersection of two CFLs is not necessarily CF.
And the complement of a CFL is not necessarily CF (Asst 5).

Q: How to prove that languages are not context free?
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CFL Closure Properties and Non-CF Languages Pumping Lemma

Pumping Lemma for CFLs

Lemma: If L is context-free, then there is a number p (the pumping
length) such that any s € L of length at least p can be divided into
s = uwvryz, where

1. wv'zy'z € Lforevery i >0,
2. v#eory+#e, and
3. Jvzy| < p.
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CFL Closure Properties and Non-CF Languages Pumping Lemma

Using the Pumping Lemma to Prove a language
non—context-free

{a™b"c™ : n > 0} is not CF.

| 4aaaaaaaaaaaadad | bbbbbbbbbbbbbbbb | ccccccccececcece

What are v, y?

» Contain 2 kinds of symbols
» Contain only one kind of symbol

= Corollary: CFLs not closed under intersection (why?)

Is the intersection of 2 CFLs or the complement of a CFL
sometimes a CFL?
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CFL Closure Properties and Non-CF Languages Parse Tree Height

Recall: Parse Trees

a B
RN
S — aB | bA | e N Parsetreefi)r_ ”
A — aS | bAA bSbhS aababb, the “yield” of
B — bS | BB [\ | thetree
a B €
I\
b S
I
9

Height = max length path from S to a terminal symbol = 6 in above
example
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CFL Closure Properties and Non-CF Languages Proof of Pumping Lemma

Proof of Pumping Lemma

Show that there exists a p such that any string s of length > p has a
parse tree of the form:
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CFL Closure Properties and Non-CF Languages Proof of Pumping Lemma

Proof of Pumping Lemma

Show that there exists a p such that any string s of length > p has a
parse tree of the form:

S
S
A S
A u z
u z A A
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CFL Closure Properties and Non-CF Languages Details of Pumping Lemma

Finding “Repetition” in a big parse tree

» Since RHS of rules have bounded length, long strings must have
tall parse trees

> A tall parse tree must have a path with a repeated nonterminal
> Letp =b™+ 1, where:

b = max length of RHS of a rule

m = # of variables

> Suppose T is the smallest parse tree for a string s € L of length
at least p. Then

Let h = height of 7. Then b* > p = b™ + 1,
= h >m,

= Path of length % in T has a repeated variable.
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CFL Closure Properties and Non-CF Languages Details of Pumping Lemma

Final annoying details

» Q: Why is v or y nonempty?

» Q: How to ensure |vzy| < p?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 53/69



Context-Free Language Recognition

Context-Free Recognition

Reading: Sipser §2.1 (Chomsky Normal Form).
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Context-Free Language Recognition
Context-Free Recognition

» Goal: Given CFG G and string w to determine if w € L(G)
> First attempt: Construct a PDA M from G and run M on w.
» Brute-Force Method:

Check all parse trees of height up to some upper limit
depending on G and |w|

Exponentially costly
> Better:
1. Transform G into Chomsky normal form (CNF) (once for G)

2. Apply a special algorithm for CNF grammars
(once for each w)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 55/69



Context-Free Language Recognition Chomsky Normal Form

Chomsky Normal Form

Def: A grammar is in Chomsky normal form if

» the only possible rule with ¢ as the RHS is S — ¢
(Of course, this rule occurs iff ¢ € L(G))

» Every other rule is of the form

1. X > YZ
where X, Y, Z are variables

2. X >0
where X is a variable and o is a single terminal symbol
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Context-Free Language Recognition Transforming a CFG into Chomsky Normal Form

Transforming a CFG into Chomsky Normal Form

Definitions:

» c-rule: one of the form X — ¢
» Long Rule: one of the form X — « where |a| > 2

» Unit Rule: one of the form X — Y
where X, Y € V

» Terminal-Generating Rule: one of the form X — «
where a ¢ V* and |a| > 1 (« has at least one terminal)
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Transforming a CFG into Chomsky Normal Form
Eliminate non-Chomsky-Normal-Form Rules in Order:

1. All e-rules, except maybe S — ¢
2. All unit rules
3. All long rules

4. All terminal-generating rules

Note: while eliminating rules of type j, we make sure not to reintroduce
rules of type i < j.
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Context-Free Language Recognition Transforming a CFG into Chomsky Normal Form

Eliminating e-Rules

0. Ensure start variable does not appear on the RHS of any rule
(by adding new start variable with rule S — 5,4 if necessary).

1. To eliminate e-rules, repeatedly do the following:
a. Pick ae-rule Y — ¢ and remove it.

b. Given arule X — «, where « contains n occurrences of Y,
replace it with 2™ rules in which 0, ..., n occurrences are
replaced by . (Do not add X — ¢ if previously removed.)

e.g.

X = aYZbY =

(Why does this terminate?)
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Context-Free Language Recognition Transforming a CFG into Chomsky Normal Form

Eliminating e-Rules

0. Ensure start variable does not appear on the RHS of any rule
(by adding new start variable with rule S — 5,4 if necessary).

1. To eliminate e-rules, repeatedly do the following:
a. Pick ae-rule Y — ¢ and remove it.

b. Given arule X — «, where « contains n occurrences of Y,

replace it with 2™ rules in which 0, ..., n occurrences are
replaced by . (Do not add X — ¢ if previously removed.)
e.g.
X = aYZbY
X — aZbY
X = aYZbY = X = aY7
X — aZb

(Why does this terminate?)
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Context-Free Language Recognition Transforming a CFG into Chomsky Normal Form

Eliminating Unit and Long Rules

2. To eliminate unit rules, repeatedly do the following:
a. Pick a unitrule A — B and remove it.

b. For every rule B — u, add rule A — u unless this is a unit rule that
was previously removed.

3. To eliminate long rules, repeatedly do the following:
a. Remove alongrule A — wyus - - - ux, where each u; € V U X and

k> 3.

b. Replace withrules A — u1 A1, A1 — u Ao, . .. JAp_o — up_qug,
where 4,, ..., Ay_2 are newly introduced variables used only in
these rules.
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Context-Free Language Recognition Transforming a CFG into Chomsky Normal Form

Eliminating Terminal-Generating Rules

4. To eliminate terminal-generating rules:
a. For each terminal « introduce a new nonterminal A.
b. Addtherules A — a

c. “Capitalize” existing rules, e.g.

replace X — aY
with X — AY
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Context-Free Language Recognition Example of Transformation

Example of Transformation to Chomsky Normal Form

Starting grammar:

S — XX
X — aXb|e

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 62/69



Benefit of CNF for Deciding if w € L(G)

» Observation: If S = XY =* w,thenw =wv, X =" u, Y =*v
where u, v are strictly shorter than w.

» Divide and Conquer: can decide whether S yields w by
recursively determining which variables yield substrings of w.

» Dynamic Programming: record answers to all subproblems to
avoid repeating work.
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Determining w € L(G), for G in CNF

Letw=a; - au,a € X.
Determine sets S;;(1 < i <j < n):

Sij = {X : X :*> ;- aj,X variable of G}

ai

az

S12 | S22

S13 |23 | S33

as

S24 | Ss4

Saa

Sln

STLTL

%

w € L(G) iff start symbol € Sy,

Curtis Larsen (Utah Tech University)
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Filling in the Matrix

» Calculate S; by inductionon j — ¢
> (j—1=0)
Si ={X : X — a; is arule of G}
> (j—i>0)
X e Syiffdrule X — YZ
dk:i<k<jy
such that Y € S;;
Z € S5

e.g. w = abaabb
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The Chomsky Normal Form Parsing Algorithm

for i < 1to n do
Si ={X:X = qgjisarule}
ford < 1ton—1do
fori < 1ton—ddo
S”M&”L‘jl{ X:X = YZisarule, }
’ het Y €8i,Z¢€ Sji1,itd

Complexity: O(n?).
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Context-Free Language Recognition CNF Recognition Algorithm

Of what does this triply nested loop remind you?
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Context-Free Language Recognition CNF Recognition Algorithm

Of what does this triply nested loop remind you?

» Matrix Multiplication

> In fact, better matrix multiplication algorithms yield (asymptotically)
better general context free parsing algorithms

» Strassen’s algorithm requires O(n?®!) instead of O(n?)
multiplications
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Summary of Context-Free Recognition

» CFL to PDA reduction yields nondeterministic automaton

» By use of Chomsky Normal Form and dynamic programming,
there is a general O(n?) non-stack-based algorithm

» The deterministic CFLs are the languages recognizable by
deterministic PDAs

» E.g. {wew® : w € {a, b}*} is a deterministic CFL but
{ww® : w € {a,b}*} (even palindromes) is not

» Methods used in compilers are deterministic stack-based
algorithms, requiring that the source language be deterministic CF
or a special type of deterministic CF (LR(k), etc.)
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Beyond Context-Free

» A Context-Sensitive Grammar allows rules of the form o — 23,
where « and j are strings and |a| < ||, so long as « contains at
least one nonterminal.

» The possibility of using rules such as aB — aDE makes the
grammar “sensitive to context”

» Is there an algorithm for determining whether w € L(G) where G
isa CSG?

» But the field moved, and now we also move, from syntactic
structures to computational difficulty
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