Computational Theory Context-free Languages

Curtis Larsen

Utah Tech University—Computing

Fall 2024

Adapted from notes by Russ Ross

Adapted from notes by Harry Lewis

Curtis Larsen (Utah Tech University)

CS 3530

1/69

Summary

Context-free Grammars

Reading: Sipser §2.1 Context-free Grammars

Formal Definitions for CFGs

• A CFG $G = (V, \Sigma, R, S)$

V = Finite set of variables (or nonterminals)

 Σ = The alphabet, a finite set of **terminals** ($V \cap \Sigma = \emptyset$).

R = A finite set of **rules**, each of the form $A \to w$ for $A \in V$ and $w \in (V \cup \Sigma)^*$.

S = The start variable, $S \in V$

e.g.
$$({S}, {a, b}, {S \rightarrow aSb, S \rightarrow \varepsilon}, S)$$

4/69

Formal Definitions for CFGs

• A CFG $G = (V, \Sigma, R, S)$

V = Finite set of variables (or nonterminals)

 Σ = The alphabet, a finite set of **terminals** ($V \cap \Sigma = \emptyset$).

R = A finite set of **rules**, each of the form $A \to w$ for $A \in V$ and $w \in (V \cup \Sigma)^*$.

S = The start variable, $S \in V$

e.g. $({S}, {a, b}, {S \rightarrow aSb, S \rightarrow \varepsilon}, S)$

Derivations: For $\alpha, \beta \in (V \cup \Sigma)^*$ (strings of terminals and nonterminals),

 $\alpha \Rightarrow \beta$ (" α yields β ") if $\alpha = uAv, \beta = uwv$, for some $u, v \in (V \cup \Sigma)^*$, and R contains rule $A \to w$.

 $\alpha \stackrel{*}{\Rightarrow} \beta$ (" α derives β ") if there is a sequence $\alpha_0, \ldots, \alpha_k$ for $k \ge 0$ such that $\alpha_0 = \alpha, \alpha_k = \beta$, and $\alpha_{i-1} \Rightarrow \alpha_i$ for each $i = 1, \ldots, k$.

4/69

Definition of Context-free Language

- The set of strings that can be derived from a context-free grammar is the language generated by the grammar.
 L(G) = {w | w can be derived by G }
 L(G) = {w ∈ Σ* : S * w} (strings of terminals only!)
- Any language that can be generated by a context-free grammar is a context-free language (CFL).

 \blacktriangleright G_1 :

 $\begin{array}{l} A \rightarrow 0A1 \\ A \rightarrow B \\ B \rightarrow \# \end{array}$

► G₁:

$$\begin{array}{l} A \rightarrow 0A1 \\ A \rightarrow B \\ B \rightarrow \# \end{array}$$

Variables? Terminals? Rules? Start variable?

► G₁:

$$\begin{array}{l} A \rightarrow 0A1 \\ A \rightarrow B \\ B \rightarrow \# \end{array}$$

Variables? Terminals? Rules? Start variable?

• Alternate G_1 :

 $A \to 0A1|B$ $B \to \#$

Curtis Larsen (Utah Tech University)

► G₁:

$$\begin{array}{l} A \rightarrow 0A1 \\ A \rightarrow B \\ B \rightarrow \# \end{array}$$

Variables? Terminals? Rules? Start variable?

• Alternate G_1 :

 $A \to 0A1|B$ $B \to \#$

Strings derived from G₁?

► G₁:

$$\begin{array}{l} A \rightarrow 0A1 \\ A \rightarrow B \\ B \rightarrow \# \end{array}$$

- Variables? Terminals? Rules? Start variable?
- Alternate G_1 :

 $A \to 0A1|B$ $B \to \#$

Strings derived from G₁?
#, 0#1, 00#11, 000#111, ...

► G₁:

$$\begin{array}{l} A \rightarrow 0A1 \\ A \rightarrow B \\ B \rightarrow \# \end{array}$$

- Variables? Terminals? Rules? Start variable?
- Alternate G_1 :

 $A \to 0A1|B$ $B \to \#$

- Strings derived from G₁?
 #, 0#1, 00#11, 000#111, ...
- $\blacktriangleright L(G_1) = ?$

► G₁:

$$\begin{array}{l} A \rightarrow 0A1 \\ A \rightarrow B \\ B \rightarrow \# \end{array}$$

Variables? Terminals? Rules? Start variable?

• Alternate G_1 :

 $A \to 0A1|B$ $B \to \#$

Strings derived from G₁?
 #, 0#1, 00#11, 000#111, ...

►
$$L(G_1) = ?$$

 $\{0^n # 1^n | n \ge 0\}$

Curtis Larsen (Utah Tech University)

Parse Trees

- A parse tree is a pictorial representation of a single derivation.
- The parse tree for w = 000 # 111, derived from G_1 .

Arithmetic Expressions

 G_2 :

$$\begin{split} EXPR &\to TERM \mid EXPR + TERM \\ TERM &\to TERM * FACTOR \mid FACTOR \\ FACTOR &\to (EXPR) \mid x \mid y \end{split}$$

Arithmetic Expressions

 G_2 :

$$\begin{split} EXPR &\to TERM \mid EXPR + TERM \\ TERM &\to TERM * FACTOR \mid FACTOR \\ FACTOR &\to (EXPR) \mid x \mid y \end{split}$$

Derived strings?

Arithmetic Expressions

 G_2 :

$$\begin{split} EXPR &\to TERM \mid EXPR + TERM \\ TERM &\to TERM * FACTOR \mid FACTOR \\ FACTOR &\to (EXPR) \mid x \mid y \end{split}$$

Derived strings?

$\blacktriangleright L(G_2)?$

Arithmetic Expressions

 G_2 :

$$\begin{split} EXPR &\to TERM \mid EXPR + TERM \\ TERM &\to TERM * FACTOR \mid FACTOR \\ FACTOR &\to (EXPR) \mid x \mid y \end{split}$$

- Derived strings?
- $\blacktriangleright L(G_2)?$
- Parse tree for some string?

8/69

▶ $L(G_3) = \{x \in \{(,)\}^* : \text{parentheses in } x \text{ are properly 'balanced'} \}.$ $G_3 = ?$

▶
$$L(G_4) = \{x \in \{a, b\}^* : x \text{ has the same # of } a$$
's and b 's}.
 $G_4 = ?$

Chomsky Normal Form

Def: A grammar is in Chomsky normal form if

- the only possible rule with ε as the RHS is S → ε (Of course, this rule occurs iff ε ∈ L(G))
- Every other rule is of the form

```
1. X \rightarrow YZ
where X, Y, Z are variables
```

2. $X \rightarrow \sigma$

where *X* is a variable and σ is a single terminal symbol

Transforming a CFG into Chomsky Normal Form

Definitions:

- ε -rule: one of the form $X \to \varepsilon$
- Long Rule: one of the form $X \to \alpha$ where $|\alpha| > 2$
- ▶ Unit Rule: one of the form $X \to Y$ where $X, Y \in V$
- Terminal-Generating Rule: one of the form X → α where α ∉ V* and |α| ≥ 1 (α has at least one terminal)

Eliminate non-Chomsky-Normal-Form Rules in Order:

- 1. All ε -rules, except maybe $S \to \varepsilon$
- 2. All unit rules
- 3. All long rules
- 4. All terminal-generating rules

Note: while eliminating rules of type j, we make sure not to reintroduce rules of type i < j.

Eliminating *ε*-Rules

- 0. Ensure start variable does not appear on the RHS of any rule (by adding new start variable with rule $S \rightarrow S_{old}$ if necessary).
- 1. To eliminate ε -rules, repeatedly do the following:
 - a. Pick a ε -rule $Y \to \varepsilon$ and remove it.
 - b. Given a rule $X \to \alpha$, where α contains n occurrences of Y, replace it with 2^n rules in which $0, \ldots, n$ occurrences are replaced by ε . (Do not add $X \to \varepsilon$ if previously removed.) e.g.

$$X \to a YZb Y \implies$$

(Why does this terminate?)

Eliminating *ε*-Rules

- 0. Ensure start variable does not appear on the RHS of any rule (by adding new start variable with rule $S \rightarrow S_{old}$ if necessary).
- 1. To eliminate ε -rules, repeatedly do the following:
 - a. Pick a ε -rule $Y \to \varepsilon$ and remove it.
 - b. Given a rule $X \to \alpha$, where α contains *n* occurrences of *Y*, replace it with 2^n rules in which $0, \ldots, n$ occurrences are replaced by ε . (Do not add $X \to \varepsilon$ if previously removed.) e.g.

$$\begin{array}{ll} X \rightarrow aYZbY \\ X \rightarrow aYZbY \\ X \rightarrow aZbY \\ X \rightarrow aZD \\ X \rightarrow aZb \end{array}$$

(Why does this terminate?)

Eliminating Unit and Long Rules

- 2. To eliminate unit rules, repeatedly do the following:
 - a. Pick a unit rule $A \rightarrow B$ and remove it.
 - b. For every rule $B \rightarrow u$, add rule $A \rightarrow u$ unless this is a unit rule that was previously removed.
- 3. To eliminate long rules, repeatedly do the following:
 - a. Remove a long rule $A \to u_1 u_2 \cdots u_k$, where each $u_i \in V \cup \Sigma$ and $k \ge 3$.
 - b. Replace with rules $A \rightarrow u_1A_1, A_1 \rightarrow u_2A_2, \dots, A_{k-2} \rightarrow u_{k-1}u_k$, where A_1, \dots, A_{k-2} are newly introduced variables used only in these rules.

Eliminating Terminal-Generating Rules

- 4. To eliminate terminal-generating rules:
 - a. For each terminal *a* introduce a new nonterminal *A*.
 - **b.** Add the rules $A \rightarrow a$

```
c. "Capitalize" existing rules, e.g.
replace X \rightarrow aY
with X \rightarrow AY
```

Example of Transformation to Chomsky Normal Form

Starting grammar:

$$\begin{array}{c} S \to XX \\ X \to aXb \,|\, \epsilon \end{array}$$

Pushdown Automata

Reading: Sipser §2.2.

Pushdown Automata

A pushdown automaton = a finite automaton + "pushdown store".

The **pushdown store** is a stack of symbols of unlimited size which the machine can read and alter only at the top.

Transitions of PDA are of form $(q, \sigma, \gamma) \mapsto (q', \gamma')$, which means:

If in state q with σ on the input tape and γ on top of the stack, replace γ by γ' on the stack and enter state q' while advancing the reading head over σ .

Curtis Larsen (Utah Tech University)

(Nondeterministic) PDA for "even palindromes"

$\{ww^{\mathcal{R}}: w \in \{a, b\}^*\}$

 $\begin{array}{ll} (q, a, \varepsilon) \mapsto (q, a) & \mbox{Push } a\mbox{'s} \\ (q, b, \varepsilon) \mapsto (q, b) & \mbox{and } b\mbox{'s} \\ (q, \varepsilon, \varepsilon) \mapsto (r, \varepsilon) & \mbox{switch to other state} \\ (r, a, a) \mapsto (r, \varepsilon) & \mbox{pop } a\mbox{'s matching input} \\ (r, b, b) \mapsto (r, \varepsilon) & \mbox{pop } b\mbox{'s matching input} \end{array}$

So the precondition (q, σ, γ) means that

- the next $|\sigma|$ symbols (0 or 1) of the input are σ and
- the top $|\gamma|$ symbols (0 or 1) on the stack are γ

(Nondeterministic) PDA for "even palindromes"

$\{ww^{\mathcal{R}}: w \in \{a, b\}^*\}$

 $\begin{array}{ll} (q, a, \varepsilon) \mapsto (q, a) & \mbox{Push } a\mbox{'s} \\ (q, b, \varepsilon) \mapsto (q, b) & \mbox{and } b\mbox{'s} \\ (q, \varepsilon, \varepsilon) \mapsto (r, \varepsilon) & \mbox{switch to other state} \\ (r, a, a) \mapsto (r, \varepsilon) & \mbox{pop } a\mbox{'s matching input} \\ (r, b, b) \mapsto (r, \varepsilon) & \mbox{pop } b\mbox{'s matching input} \end{array}$

Need to test whether stack empty: push \$ at beginning and check at end.

$$\begin{array}{l} (q_0,\varepsilon,\varepsilon)\mapsto (q,\$) \\ (r,\varepsilon,\$) \mapsto (q_f,\varepsilon) \end{array}$$

Language acceptance with PDAs

A PDA accepts an input string

If there is a computation that starts

- in the start state
- with reading head at the beginning of string
- with the stack empty

and ends

- in a final state
- with all the input consumed

A PDA computation becomes "blocked" (i.e. "dies") if

no transition matches **both** the input and stack

20/69

Formal definition of a PDA

$$M = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

- $Q = \mathsf{states}$
- $\Sigma = \operatorname{input} \operatorname{alphabet}$
- $\Gamma = \text{stack alphabet}$
- $\delta = \text{transition function}$

```
Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \to \mathcal{P}(Q \times (\Gamma \cup \{\varepsilon\}))
```

 $q_0 =$ start state

F = final states

Computation by a PDA

▶ *M* accepts *w* if we can write $w = w_1 \cdots w_m$, where each $w_i \in \Sigma \cup \{\varepsilon\}$, and there is a sequence of states r_0, \ldots, r_m and stack strings $s_0, \ldots, s_m \in \Gamma^*$ that satisfy

1.
$$r_0 = q_0$$
 and $s_0 = \varepsilon$.

- 2. For each *i*, $(r_{i+1}, \gamma') \in \delta(r_i, w_{i+1}, \gamma)$ where $s_i = \gamma t$ and $s_{i+1} = \gamma' t$ for some $\gamma, \gamma' \in \Gamma \cup \{\varepsilon\}$ and $t \in \Gamma^*$.
- **3**. $r_m \in F$.

•
$$L(M) = \{ w \in \Sigma^* : M \text{ accepts } w \}.$$

PDA for $\{w \in \{a, b\}^* : \#_a(w) = \#_b(w)\}$

PDA for $\{w \in \{a, b\}^* : \#_a(w) = \#_b(w)\}$

Strategy:

- Keep $|\#_a(w) \#_b(w)| = n$ on stack in form of 1^n .
- Keep the sign of $\#_a(w) \#_b(w)$ in the state:

 $+ \text{ or } 0 \Rightarrow \text{state } q_+$

 $- \text{ or } 0 \Rightarrow \text{state } q_{-}$
Equivalence of CFGs and PDAs

Thm: The class of languages recognized by PDAs is the CFLs.

- I. For every CFG G, there is a PDA Mwith L(M) = L(G)
- II. For every PDA M, there is a CFG Gwith L(G) = L(M)

Proof that every CFL is accepted by some PDA

Let $G = (V, \Sigma, R, S)$

We'll allow a generalized sort of PDA that can push **strings** onto stack. E.g., $(q, a, b) \mapsto (r, cd)$

25/69

Proof that every CFL is accepted by some PDA

Let $G = (V, \Sigma, R, S)$

We'll allow a generalized sort of PDA that can push strings onto stack.

 $\mathsf{E.g.,}~(q,a,b)\mapsto (r,cd)$

The corresponding PDA has just 3 states:

 $q_{start} \sim$ start state $q_{loop} \sim$ "main loop" state $q_{accept} \sim$ final state

```
Stack alphabet = V \cup \Sigma \cup \{\$\}
```

From a CFG to a PDA

$CFL \Rightarrow PDA$, Continued: The Transitions of the PDA

Transitions:

$$\blacktriangleright \ \delta(q_{start},\varepsilon,\varepsilon) = \{(q_{loop},S\$)\}$$

"Start by putting S on the stack, & go to q_{loop} "

►
$$\delta(q_{loop}, \varepsilon, A) = \{(q_{loop}, w)\}$$
 for each rule $A \to w$

"Remove a variable from the top of the stack and replace it with a corresponding righthand side"

•
$$\delta(q_{loop}, \sigma, \sigma) = \{(q_{loop}, \varepsilon)\}$$
 for each $\sigma \in \Sigma$

"Pop a terminal symbol from the stack if it matches the next input symbol"

$$\blacktriangleright \ \delta(q_{loop},\varepsilon,\$) = \{(q_{accept},\varepsilon)\}.$$

"Go to accept state if stack contains only \$."

Curtis Larsen (Utah Tech University)

Example

- Consider grammar G with rules {S → aSb, S → ε} (so L(G) = {aⁿbⁿ : n ≥ 0})
- Construct PDA
 - $M = (\{q_{start}, q_{loop}, q_{accept}\}, \{a, b\}, \{a, b, S, \$\}, \delta, q_{start}, \{q_{accept}\})$

Transition Function δ :

• Derivation $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

Corresponding Computation:

The Dual Bottom-Up CFG \rightarrow PDA Construction

$$\blacktriangleright \ \delta(q_{\mathsf{start}},\varepsilon,\varepsilon) = \{(q_{\mathsf{loop}},\$)\}$$

"Start by putting \$ on the stack, & go to q_{loop} "

►
$$\delta(q_{\mathsf{loop}}, \sigma, \varepsilon) = \{(q_{\mathsf{loop}}, \sigma)\}$$
 for each $\sigma \in \Sigma$

"Shift input symbols onto the stack"

•
$$\delta(q_{\mathsf{loop}}, \varepsilon, w^{\mathcal{R}}) = \{(q_{\mathsf{loop}}, A) : A \to w) \text{ is a rule of } G\}$$

"Reduce right-hand sides on the stack to corresponding left-hand sides"

$$\blacktriangleright \ \delta(q_{\mathsf{loop}}, \varepsilon, S\$) = \{q_{\mathsf{accept}}, \varepsilon)\}$$

"Accept if the stack consists just of S above the bottom-marker"

Proof that for every PDA M there is a CFG G such that L(M) = L(G)

First modify PDA M so that

- Single accept state.
- All accepting computations end with empty stack.
- In every step, push a symbol or pop a symbol but not both.

Design of the grammar G equivalent to PDA M

- Variables: A_{pq} for every two states p, q of M
- Goal: A_{pq} generates all strings that can take M from p to q, beginning and ending with an empty stack.

Rules:

- ▶ For all states $p, q, r, A_{pq} \rightarrow A_{pr}A_{rq}$
- ► For states p, q, r, s and $\sigma, \tau \in \Sigma$, $A_{pq} \rightarrow \sigma A_{rs} \tau$ if there is a stack symbol γ such that $\delta(p, \sigma, \varepsilon)$ contains (r, γ) and $\delta(s, \tau, \gamma)$ contains (q, ε)
- ▶ For every state $p, A_{pp} \to \varepsilon$
- Start variable: $A_{q_{start}q_{accept}}$

Visualizing the Construction

How to generate all possible strings that could be recognized moving from state p with an empty stack to q with an empty stack? Two cases:

- 1. If the stack is also empty in some middle state r, trace the path from $p \rightarrow r$ then $r \rightarrow q$
- 2. Else if $p \to r$ pushes γ on the stack and $s \to q$ pops it back off, generate $\sigma A_{rs} \tau$.

Proof Sketch: the Grammar is Equivalent to the PDA

Claim: $A_{pq} \stackrel{*}{\Rightarrow} w$ if and only if w can take M from p to q, beginning & ending w/empty stack

- \Rightarrow Proof by induction on length of derivation
- Proof by induction on length of computation
 - Computation of length 0 (base case): Use $A_{pp} \rightarrow \varepsilon$
 - Stack empties sometime in middle of computation: Use $A_{pq} \rightarrow A_{pr}A_{rq}$
 - Stack does not empty in middle of computation: Use $A_{pq} \rightarrow \sigma A_{rs} \tau$

32/69

From a PDA to a CFG

Context-free Grammars

STOP: End cgl.

From a PDA to a CFG

Context-free Grammars

Reading: Sipser §2.1 (except Chomsky Normal Form).

Context-free Grammars

- Originated as abstract model for:
 - Structure of natural languages (Chomsky)
 - Syntactic specification of programming languages (Backus-Naur Form)

35/69

Context-free Grammars

- Originated as abstract model for:
 - Structure of natural languages (Chomsky)
 - Syntactic specification of programming languages (Backus-Naur Form)
- A context-free grammar is a set of generative rules for strings

e.g.

$$G = \frac{S \to aSt}{S \to \varepsilon}$$

A derivation looks like:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$L(G) = \{\varepsilon, ab, aabb, \ldots\} = \{a^n b^n : n \ge 0\}$$

Equivalent Formalisms

1. Backus-Naur Form (aka BNF, Backus Normal Form)

"|" means "or" in the metalanguage = same left-hand side

Equivalent Formalisms

1. Backus-Naur Form (aka BNF, Backus Normal Form)

due to John Backus and Peter Naur $\langle term \rangle ::= \langle factor \rangle | \langle factor \rangle * \langle term \rangle$ $| \langle factor \rangle / \langle term \rangle$

"|" means "or" in the metalanguage = same left-hand side

2. "Railroad Diagrams"

Formal Definitions for CFGs

• A CFG $G = (V, \Sigma, R, S)$

V = Finite set of variables (or nonterminals)

 Σ = The alphabet, a finite set of **terminals** ($V \cap \Sigma = \emptyset$).

R = A finite set of **rules**, each of the form $A \to w$ for $A \in V$ and $w \in (V \cup \Sigma)^*$.

S = The start variable, a member of V

e.g. $(\{S\}, \{a, b\}, \{S \rightarrow aSb, S \rightarrow \varepsilon\}, S)$

Formal Definitions for CFGs

• A CFG $G = (V, \Sigma, R, S)$

V = Finite set of variables (or nonterminals)

 Σ = The alphabet, a finite set of **terminals** ($V \cap \Sigma = \emptyset$).

R = A finite set of **rules**, each of the form $A \to w$ for $A \in V$ and $w \in (V \cup \Sigma)^*$.

S = The start variable, a member of V

e.g. $({S}, {a, b}, {S \to aSb, S \to \varepsilon}, S)$

Derivations: For $\alpha, \beta \in (V \cup \Sigma)^*$ (strings of terminals and nonterminals),

 $\alpha \Rightarrow_G \beta$ if $\alpha = uAv, \beta = uwv$ for some $u, v \in (V \cup \Sigma)^*$ and rule $A \to w$.

 $\alpha \stackrel{*}{\Rightarrow}_G \beta$ (" α yields β ") if there is a sequence $\alpha_0, \ldots, \alpha_k$ for $k \ge 0$ such that $\alpha_0 = \alpha, \alpha_k = \beta$, and $\alpha_{i-1} \Rightarrow_G \alpha_i$ for each $i = 1, \ldots, k$.

• $L(G) = \{ w \in \Sigma^* : S \stackrel{*}{\Rightarrow}_G w \}$ (strings of terminals only!)

More examples of CFGs

Arithmetic Expressions $G_1:$ $E \rightarrow x \mid y \mid E * E \mid E + E \mid (E)$ $G_2:$ $E \rightarrow T \mid E + T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid x \mid y$ Q: Which is preferable? Why?

More examples of CFGs

▶ $L = \{x \in \{(,)\}^* : \text{parentheses in } x \text{ are properly 'balanced'} \}.$

• $L = \{x \in \{a, b\}^* : x \text{ has the same # of } a$'s and b's}.

39/69

Parse Trees

Derivations in a CFG can be represented by parse trees.

Examples:

Each parse tree corresponds to many derivations, but has unique **leftmost derivation**.

40/69

Parsing

Parsing: Given $x \in L(G)$, produce a parse tree for x. (Used to 'interpret' x. Compilers parse, rather than merely recognize, so they can assign semantics to expressions in the source language.)

Ambiguity: A grammar is **ambiguous** if some string has two parse trees.

Example:

Context-free Grammars and Automata

What is the fourth term in the analogy:

Regular Languages : Finite Automata as Context-free Languages : ???

Regular Grammars

Hint: There is a special kind of CFGs, the **regular grammars**, that generate exactly the regular languages.

A CFG is (**right-)regular** if any occurrence of a nonterminal on the RHS of a rule is as the rightmost symbol.

Turning a DFA into an equivalent Regular Grammar

Variables are states.

► Transition
$$\delta(P, \sigma) = R$$
 $(P) \xrightarrow{\sigma} R$
becomes $P \to \sigma R$

If P is accepting, add rule P → ε Example: {x : x has an even # of a's and an even # of b's}

Other Direction: Omitted.

CFL Closure Properties and Non–Context-Free Languages

Reading: Sipser §2.3.

44/69

Closure Properties of CFLs

Thm: The CFLs are closed under

- Union
- Concatenation
- Kleene *
- Intersection with a regular language

Intersection of a CFL and a regular language is CF

Pf sketch: Let L_1 be CF and L_2 be regular

- $L_1 = L(M_1), M_1 \text{ a PDA}$
- $L_2 = L(M_2), M_2 \text{ a DFA}$
- $Q_1 =$ state set of M_1
- $Q_2 =$ state set of M_2

Construct a PDA with state set $Q_1 \times Q_2$ which keeps track of computation of both M_1 and M_2 on input.

Q: Why doesn't this argument work if M_1 and M_2 are both PDAs?

In fact, the intersection of two CFLs is not necessarily CF.

And the complement of a CFL is not necessarily CF (Asst 5).

Q: How to prove that languages are not context free?

Pumping Lemma for CFLs

Lemma: If *L* is context-free, then there is a number *p* (the **pumping length**) such that any $s \in L$ of length at least *p* can be divided into s = uvxyz, where

1.
$$uv^i xy^i z \in L$$
 for every $i \ge 0$,

2.
$$v \neq \varepsilon$$
 or $y \neq \varepsilon$, and

3. $|vxy| \leq p$.

Using the Pumping Lemma to Prove a language non-context-free

 $\{a^n b^n c^n : n \ge 0\}$ is not CF.

What are v, y?

- Contain 2 kinds of symbols
- Contain only one kind of symbol

 \Rightarrow Corollary: CFLs not closed under intersection (why?)

Is the intersection of 2 CFLs or the complement of a CFL **sometimes** a CFL?

Parse Tree Height

Recall: Parse Trees

Height = max length path from S to a terminal symbol = 6 in above example

Proof of Pumping Lemma

Show that there exists a p such that any string s of length $\geq p$ has a parse tree of the form:

Proof of Pumping Lemma

Show that there exists a p such that any string s of length $\geq p$ has a parse tree of the form:

Finding "Repetition" in a big parse tree

- Since RHS of rules have bounded length, long strings must have tall parse trees
- A tall parse tree must have a path with a repeated nonterminal
- Let $p = b^m + 1$, where:

 $b = \max$ length of RHS of a rule

m = # of variables

Suppose T is the smallest parse tree for a string $s \in L$ of length at least p. Then

Let
$$h =$$
 height of T . Then $b^h \ge p = b^m + 1$,

 $\Rightarrow h > m$,

 \Rightarrow Path of length *h* in *T* has a repeated variable.

Curtis Larsen (Utah Tech University)

Final annoying details

- ▶ **Q:** Why is v or y nonempty?
- **Q:** How to ensure $|vxy| \le p$?

53/69

Context-Free Language Recognition

Context-Free Recognition

Reading: Sipser §2.1 (Chomsky Normal Form).
Context-Free Recognition

- **Goal:** Given CFG G and string w to determine if $w \in L(G)$
- First attempt: Construct a PDA M from G and run M on w.

Brute-Force Method:

Check all parse trees of height up to some upper limit depending on G and |w|

Exponentially costly

Better:

- 1. Transform G into Chomsky normal form (CNF) (once for G)
- 2. Apply a special algorithm for CNF grammars (once for each *w*)

Chomsky Normal Form

Def: A grammar is in Chomsky normal form if

- the only possible rule with ε as the RHS is S → ε (Of course, this rule occurs iff ε ∈ L(G))
- Every other rule is of the form

1. $X \rightarrow YZ$ where X, Y, Z are variables

2. $X \rightarrow \sigma$

where *X* is a variable and σ is a single terminal symbol

Transforming a CFG into Chomsky Normal Form

Definitions:

- ε -rule: one of the form $X \to \varepsilon$
- Long Rule: one of the form $X \to \alpha$ where $|\alpha| > 2$
- ▶ Unit Rule: one of the form $X \to Y$ where $X, Y \in V$
- Terminal-Generating Rule: one of the form X → α where α ∉ V* and |α| > 1 (α has at least one terminal)

Eliminate non-Chomsky-Normal-Form Rules in Order:

- 1. All ε -rules, except maybe $S \to \varepsilon$
- 2. All unit rules
- 3. All long rules
- 4. All terminal-generating rules

Note: while eliminating rules of type j, we make sure not to reintroduce rules of type i < j.

Eliminating *c*-Rules

- 0. Ensure start variable does not appear on the RHS of any rule (by adding new start variable with rule $S \rightarrow S_{old}$ if necessary).
- 1. To eliminate ε -rules, repeatedly do the following:
 - a. Pick a ε -rule $Y \to \varepsilon$ and remove it.
 - b. Given a rule $X \to \alpha$, where α contains *n* occurrences of *Y*, replace it with 2^n rules in which $0, \ldots, n$ occurrences are replaced by ε . (Do not add $X \to \varepsilon$ if previously removed.) e.g.

$$X \to a YZb Y \implies$$

(Why does this terminate?)

Eliminating *c*-Rules

- 0. Ensure start variable does not appear on the RHS of any rule (by adding new start variable with rule $S \rightarrow S_{old}$ if necessary).
- 1. To eliminate ε -rules, repeatedly do the following:
 - a. Pick a ε -rule $Y \to \varepsilon$ and remove it.
 - b. Given a rule $X \to \alpha$, where α contains *n* occurrences of *Y*, replace it with 2^n rules in which $0, \ldots, n$ occurrences are replaced by ε . (Do not add $X \to \varepsilon$ if previously removed.) e.g.

$$\begin{array}{ll} X \rightarrow aYZbY \\ X \rightarrow aYZbY \\ X \rightarrow aZbY \\ X \rightarrow aZb \end{array} \Rightarrow \begin{array}{ll} X \rightarrow aYZbY \\ X \rightarrow aZD \\ X \rightarrow aZb \end{array}$$

(Why does this terminate?)

59/69

Eliminating Unit and Long Rules

- 2. To eliminate unit rules, repeatedly do the following:
 - a. Pick a unit rule $A \rightarrow B$ and remove it.
 - b. For every rule $B \rightarrow u$, add rule $A \rightarrow u$ unless this is a unit rule that was previously removed.
- 3. To eliminate long rules, repeatedly do the following:
 - a. Remove a long rule $A \to u_1 u_2 \cdots u_k$, where each $u_i \in V \cup \Sigma$ and $k \ge 3$.
 - b. Replace with rules $A \rightarrow u_1A_1, A_1 \rightarrow u_2A_2, \ldots, A_{k-2} \rightarrow u_{k-1}u_k$, where A_1, \ldots, A_{k-2} are newly introduced variables used only in these rules.

Eliminating Terminal-Generating Rules

- 4. To eliminate terminal-generating rules:
 - a. For each terminal *a* introduce a new nonterminal *A*.
 - **b.** Add the rules $A \rightarrow a$

```
c. "Capitalize" existing rules, e.g.
replace X \rightarrow aY
with X \rightarrow AY
```

Example of Transformation to Chomsky Normal Form

Starting grammar:

$$\begin{array}{l} S \to XX \\ X \to aXb \,|\, \varepsilon \end{array}$$

Benefit of CNF for Deciding if $w \in L(G)$

- ▶ **Observation:** If $S \Rightarrow XY \Rightarrow^* w$, then w = uv, $X \Rightarrow^* u$, $Y \Rightarrow^* v$ where u, v are *strictly shorter* than w.
- Divide and Conquer: can decide whether S yields w by recursively determining which variables yield substrings of w.
- Dynamic Programming: record answers to all subproblems to avoid repeating work.

Determining $w \in L(G)$, for G in CNF

Let $w = a_1 \cdots a_n, a_i \in \Sigma$. Determine sets $S_{ij} (1 \le i \le j \le n)$:

 $S_{ij} = \{X : X \stackrel{*}{\Rightarrow} a_i \cdots a_j, X \text{ variable of } G\}$

$$w \in L(G)$$
 iff start symbol $\in S_{1n}$

Filling in the Matrix

• Calculate S_{ij} by induction on j - i

(j − i = 0)

$$S_{ii} = \{X : X \to a_i \text{ is a rule of } G\}$$
(j − i > 0)
 $X \in S_{ij} \text{ iff } \exists \text{ rule } X \to YZ$
 $\exists k : i \le k < j$
such that $Y \in S_{ik}$
 $Z \in S_{k+1,j}$

e.g. w = abaabb

The Chomsky Normal Form Parsing Algorithm

for
$$i \leftarrow 1$$
 to n do
 $S_{ii} = \{X : X \to a_i \text{ is a rule }\}$
for $d \leftarrow 1$ to $n - 1$ do
for $i \leftarrow 1$ to $n - d$ do
 $S_{i,i+d} \leftarrow \bigcup_{j=i}^{i+d-1} \begin{cases} X : X \to YZ \text{ is a rule,} \\ Y \in S_{ij}, Z \in S_{j+1,i+d} \end{cases}$

Complexity: $\mathcal{O}(n^3)$.

Of what does this triply nested loop remind you?

Of what does this triply nested loop remind you?

- Matrix Multiplication
- In fact, better matrix multiplication algorithms yield (asymptotically) better general context free parsing algorithms
- Strassen's algorithm requires O(n^{2.81}) instead of O(n³) multiplications

Summary of Context-Free Recognition

- CFL to PDA reduction yields nondeterministic automaton
- ▶ By use of Chomsky Normal Form and dynamic programming, there is a general $\mathcal{O}(n^3)$ non-stack-based algorithm
- The deterministic CFLs are the languages recognizable by deterministic PDAs
- ▶ E.g. $\{wcw^R : w \in \{a, b\}^*\}$ is a deterministic CFL but $\{ww^R : w \in \{a, b\}^*\}$ (even palindromes) is not
- Methods used in compilers are deterministic stack-based algorithms, requiring that the source language be deterministic CF or a special type of deterministic CF (LR(k), etc.)

68/69

Beyond Context-Free

- A Context-Sensitive Grammar allows rules of the form α → β, where α and β are strings and |α| ≤ |β|, so long as α contains at least one nonterminal.
- ► The possibility of using rules such as aB → aDE makes the grammar "sensitive to context"
- ► Is there an algorithm for determining whether w ∈ L(G) where G is a CSG?
- But the field moved, and now we also move, from syntactic structures to computational difficulty

69/69