
Computational Theory
Context-free Languages

Curtis Larsen

Utah Tech University—Computing

Fall 2024

Adapted from notes by Russ Ross

Adapted from notes by Harry Lewis

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 1 / 69

Languages

Summary

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 2 / 69

Context-free Grammars

Context-free Grammars

Reading: Sipser §2.1 Context-free Grammars

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 3 / 69

Context-free Grammars Formal Definitions

Formal Definitions for CFGs

▶ A CFG G = (V ,Σ,R,S)

V = Finite set of variables (or nonterminals)

Σ = The alphabet, a finite set of terminals (V ∩ Σ = ∅).

R = A finite set of rules, each of the form A → w
for A ∈ V and w ∈ (V ∪ Σ)∗.

S = The start variable, S ∈ V

e.g. ({S}, {a, b}, {S → aSb,S → ε},S)

▶ Derivations: For α, β ∈ (V ∪ Σ)∗ (strings of terminals and nonterminals),

α ⇒ β (“α yields β”) if α = uAv , β = uwv , for some u, v ∈ (V ∪ Σ)∗, and
R contains rule A → w .

α
∗⇒ β (“α derives β”) if there is a sequence α0, . . . , αk for k ≥ 0 such that
α0 = α, αk = β, and αi−1 ⇒ αi for each i = 1, . . . , k .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 4 / 69

Context-free Grammars Formal Definitions

Formal Definitions for CFGs

▶ A CFG G = (V ,Σ,R,S)

V = Finite set of variables (or nonterminals)

Σ = The alphabet, a finite set of terminals (V ∩ Σ = ∅).

R = A finite set of rules, each of the form A → w
for A ∈ V and w ∈ (V ∪ Σ)∗.

S = The start variable, S ∈ V

e.g. ({S}, {a, b}, {S → aSb,S → ε},S)
▶ Derivations: For α, β ∈ (V ∪ Σ)∗ (strings of terminals and nonterminals),

α ⇒ β (“α yields β”) if α = uAv , β = uwv , for some u, v ∈ (V ∪ Σ)∗, and
R contains rule A → w .

α
∗⇒ β (“α derives β”) if there is a sequence α0, . . . , αk for k ≥ 0 such that
α0 = α, αk = β, and αi−1 ⇒ αi for each i = 1, . . . , k .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 4 / 69

Context-free Grammars Formal Definitions

Definition of Context-free Language

▶ The set of strings that can be derived from a context-free grammar
is the language generated by the grammar.
L(G) = {w |w can be derived by G }
L(G) = {w ∈ Σ∗ : S

∗⇒ w} (strings of terminals only!)
▶ Any language that can be generated by a context-free grammar is

a context-free language (CFL).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 5 / 69

Context-free Grammars Examples

Example CFG G1

▶ G1:
A→ 0A1

A→ B

B → #

▶ Variables? Terminals? Rules? Start variable?

▶ Alternate G1:
A→ 0A1|B
B → #

▶ Strings derived from G1?

#, 0#1, 00#11, 000#111, ...

▶ L(G1) = ?

{0n#1n |n ≥ 0}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 6 / 69

Context-free Grammars Examples

Example CFG G1

▶ G1:
A→ 0A1

A→ B

B → #

▶ Variables? Terminals? Rules? Start variable?

▶ Alternate G1:
A→ 0A1|B
B → #

▶ Strings derived from G1?

#, 0#1, 00#11, 000#111, ...

▶ L(G1) = ?

{0n#1n |n ≥ 0}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 6 / 69

Context-free Grammars Examples

Example CFG G1

▶ G1:
A→ 0A1

A→ B

B → #

▶ Variables? Terminals? Rules? Start variable?

▶ Alternate G1:
A→ 0A1|B
B → #

▶ Strings derived from G1?

#, 0#1, 00#11, 000#111, ...

▶ L(G1) = ?

{0n#1n |n ≥ 0}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 6 / 69

Context-free Grammars Examples

Example CFG G1

▶ G1:
A→ 0A1

A→ B

B → #

▶ Variables? Terminals? Rules? Start variable?

▶ Alternate G1:
A→ 0A1|B
B → #

▶ Strings derived from G1?

#, 0#1, 00#11, 000#111, ...

▶ L(G1) = ?

{0n#1n |n ≥ 0}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 6 / 69

Context-free Grammars Examples

Example CFG G1

▶ G1:
A→ 0A1

A→ B

B → #

▶ Variables? Terminals? Rules? Start variable?

▶ Alternate G1:
A→ 0A1|B
B → #

▶ Strings derived from G1?

#, 0#1, 00#11, 000#111, ...

▶ L(G1) = ?

{0n#1n |n ≥ 0}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 6 / 69

Context-free Grammars Examples

Example CFG G1

▶ G1:
A→ 0A1

A→ B

B → #

▶ Variables? Terminals? Rules? Start variable?

▶ Alternate G1:
A→ 0A1|B
B → #

▶ Strings derived from G1?

#, 0#1, 00#11, 000#111, ...

▶ L(G1) = ?

{0n#1n |n ≥ 0}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 6 / 69

Context-free Grammars Examples

Example CFG G1

▶ G1:
A→ 0A1

A→ B

B → #

▶ Variables? Terminals? Rules? Start variable?

▶ Alternate G1:
A→ 0A1|B
B → #

▶ Strings derived from G1?

#, 0#1, 00#11, 000#111, ...

▶ L(G1) = ?

{0n#1n |n ≥ 0}
Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 6 / 69

Context-free Grammars Parse Trees

Parse Trees

▶ A parse tree is a pictorial representation of a single derivation.

▶ The parse tree for w = 000#111, derived from G1.

G1:

A→ 0A1

A→ B

B → #

A

A

A

A

B

#000 1 1 1

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 7 / 69

Context-free Grammars Examples

More examples of CFGs

▶ Arithmetic Expressions

G2:
EXPR → TERM |EXPR + TERM

TERM → TERM ∗ FACTOR |FACTOR

FACTOR → (EXPR) | x | y

▶ Derived strings?

▶ L(G2)?

▶ Parse tree for some string?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 69

Context-free Grammars Examples

More examples of CFGs

▶ Arithmetic Expressions

G2:
EXPR → TERM |EXPR + TERM

TERM → TERM ∗ FACTOR |FACTOR

FACTOR → (EXPR) | x | y
▶ Derived strings?

▶ L(G2)?

▶ Parse tree for some string?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 69

Context-free Grammars Examples

More examples of CFGs

▶ Arithmetic Expressions

G2:
EXPR → TERM |EXPR + TERM

TERM → TERM ∗ FACTOR |FACTOR

FACTOR → (EXPR) | x | y
▶ Derived strings?

▶ L(G2)?

▶ Parse tree for some string?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 69

Context-free Grammars Examples

More examples of CFGs

▶ Arithmetic Expressions

G2:
EXPR → TERM |EXPR + TERM

TERM → TERM ∗ FACTOR |FACTOR

FACTOR → (EXPR) | x | y
▶ Derived strings?

▶ L(G2)?

▶ Parse tree for some string?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 69

Context-free Grammars Examples

More examples of CFGs

▶ L(G3) = {x ∈ {(,)}∗ : parentheses in x are properly ‘balanced’}.
G3 = ?

▶ L(G4) = {x ∈ {a, b}∗ : x has the same # of a ’s and b’s}.
G4 = ?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 9 / 69

Context-free Grammars Chomsky Normal Form

Chomsky Normal Form

Def: A grammar is in Chomsky normal form if

▶ the only possible rule with ε as the RHS is S → ε
(Of course, this rule occurs iff ε ∈ L(G))

▶ Every other rule is of the form

1. X → YZ
where X ,Y ,Z are variables

2. X → σ
where X is a variable and σ is a single terminal symbol

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 10 / 69

Context-free Grammars Transforming a CFG into Chomsky Normal Form

Transforming a CFG into Chomsky Normal Form

Definitions:

▶ ε-rule: one of the form X → ε

▶ Long Rule: one of the form X → α where |α| > 2

▶ Unit Rule: one of the form X → Y
where X ,Y ∈ V

▶ Terminal-Generating Rule: one of the form X → α
where α /∈ V ∗ and |α| ≥ 1 (α has at least one terminal)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 11 / 69

Context-free Grammars Transforming a CFG into Chomsky Normal Form

Eliminate non-Chomsky-Normal-Form Rules in Order:

1. All ε-rules, except maybe S → ε

2. All unit rules

3. All long rules

4. All terminal-generating rules

Note: while eliminating rules of type j , we make sure not to reintroduce
rules of type i < j .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 69

Context-free Grammars Transforming a CFG into Chomsky Normal Form

Eliminating ε-Rules

0. Ensure start variable does not appear on the RHS of any rule
(by adding new start variable with rule S → Sold if necessary).

1. To eliminate ε-rules, repeatedly do the following:

a. Pick a ε-rule Y → ε and remove it.

b. Given a rule X → α, where α contains n occurrences of Y ,
replace it with 2n rules in which 0, . . . ,n occurrences are
replaced by ε. (Do not add X → ε if previously removed.)
e.g.

X → aYZbY ⇒

X → aYZbY
X → aZbY
X → aYZb
X → aZb

(Why does this terminate?)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 13 / 69

Context-free Grammars Transforming a CFG into Chomsky Normal Form

Eliminating ε-Rules

0. Ensure start variable does not appear on the RHS of any rule
(by adding new start variable with rule S → Sold if necessary).

1. To eliminate ε-rules, repeatedly do the following:

a. Pick a ε-rule Y → ε and remove it.

b. Given a rule X → α, where α contains n occurrences of Y ,
replace it with 2n rules in which 0, . . . ,n occurrences are
replaced by ε. (Do not add X → ε if previously removed.)
e.g.

X → aYZbY ⇒

X → aYZbY
X → aZbY
X → aYZb
X → aZb

(Why does this terminate?)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 13 / 69

Context-free Grammars Transforming a CFG into Chomsky Normal Form

Eliminating Unit and Long Rules

2. To eliminate unit rules, repeatedly do the following:

a. Pick a unit rule A→ B and remove it.

b. For every rule B → u, add rule A→ u unless this is a unit rule that
was previously removed.

3. To eliminate long rules, repeatedly do the following:

a. Remove a long rule A→ u1u2 · · · uk , where each ui ∈ V ∪ Σ and
k ≥ 3.

b. Replace with rules A→ u1A1,A1 → u2A2, . . . ,Ak−2 → uk−1uk ,
where A1, . . . ,Ak−2 are newly introduced variables used only in
these rules.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 14 / 69

Context-free Grammars Transforming a CFG into Chomsky Normal Form

Eliminating Terminal-Generating Rules

4. To eliminate terminal-generating rules:

a. For each terminal a introduce a new nonterminal A.

b. Add the rules A→ a

c. “Capitalize” existing rules, e.g.
replace X → aY
with X → AY

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 15 / 69

Context-free Grammars Example of Transformation

Example of Transformation to Chomsky Normal Form

Starting grammar:

S → XX
X → aXb | ε

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 16 / 69

Pushdown Automata

Pushdown Automata

Reading: Sipser §2.2.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 17 / 69

Pushdown Automata Pushdown Automata

Pushdown Automata
A pushdown automaton = a finite automaton + “pushdown store”.

The pushdown store is a stack of symbols of unlimited size which the
machine can read and alter only at the top.

a b b a b a · · ·Input

F.C.

a

d

c

b

b

Stack

reading head
(L to R only,
one symbol at a
time, or stays put)

pushdown store head can push
(add symbols) or pop
(remove and check symbols)

Transitions of PDA are of form (q , σ, γ) 7→ (q ′, γ′), which means:

If in state q with σ on the input tape and γ on top of the stack,
replace γ by γ′ on the stack and enter state q ′ while advancing the reading
head over σ.
Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18 / 69

Pushdown Automata Pushdown Automata

(Nondeterministic) PDA for “even palindromes”

{wwR : w ∈ {a, b}∗}

(q , a, ε) 7→ (q , a) Push a ’s
(q , b, ε) 7→ (q , b) and b’s
(q , ε, ε) 7→ (r , ε) switch to other state
(r , a, a) 7→ (r , ε) pop a ’s matching input
(r , b, b) 7→ (r , ε) pop b’s matching input

So the precondition (q , σ, γ) means that

▶ the next |σ| symbols (0 or 1) of the input are σ and

▶ the top |γ| symbols (0 or 1) on the stack are γ

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 69

Pushdown Automata Pushdown Automata

(Nondeterministic) PDA for “even palindromes”

{wwR : w ∈ {a, b}∗}

(q , a, ε) 7→ (q , a) Push a ’s
(q , b, ε) 7→ (q , b) and b’s
(q , ε, ε) 7→ (r , ε) switch to other state
(r , a, a) 7→ (r , ε) pop a ’s matching input
(r , b, b) 7→ (r , ε) pop b’s matching input

Need to test whether stack empty: push $ at beginning and
check at end.

(q0, ε, ε) 7→ (q , $)
(r , ε, $) 7→ (qf , ε)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 69

Pushdown Automata Pushdown Automata

Language acceptance with PDAs

A PDA accepts an input string

If there is a computation that starts
▶ in the start state

▶ with reading head at the beginning of string

▶ with the stack empty
and ends
▶ in a final state

▶ with all the input consumed

A PDA computation becomes “blocked” (i.e. “dies”) if

▶ no transition matches both the input and stack

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 69

Pushdown Automata Formal Definition

Formal definition of a PDA

M = (Q ,Σ,Γ, δ, q0,F)

Q = states

Σ = input alphabet

Γ = stack alphabet

δ = transition function

Q × (Σ ∪ {ε})× (Γ ∪ {ε})→ P(Q × (Γ ∪ {ε}))

q0 = start state

F = final states

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 69

Pushdown Automata Computation by a PDA

Computation by a PDA

▶ M accepts w if we can write w = w1 · · ·wm ,
where each wi ∈ Σ ∪ {ε},
and there is a sequence of states r0, . . . , rm
and stack strings s0, . . . , sm ∈ Γ∗ that satisfy

1. r0 = q0 and s0 = ε.

2. For each i , (ri+1, γ
′) ∈ δ(ri ,wi+1, γ) where si = γt and si+1 = γ′t

for some γ, γ′ ∈ Γ ∪ {ε} and t ∈ Γ∗.

3. rm ∈ F .

▶ L(M) = {w ∈ Σ∗ : M accepts w}.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 69

Pushdown Automata Computation by a PDA

PDA for {w ∈ {a, b}∗ : #a(w) = #b(w)}

Strategy:

▶ Keep |#a(w)−#b(w)| = n on stack in form of 1n$.

▶ Keep the sign of #a(w)−#b(w) in the state:

+ or 0⇒ state q+

− or 0⇒ state q−

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 69

Pushdown Automata Computation by a PDA

PDA for {w ∈ {a, b}∗ : #a(w) = #b(w)}

Strategy:

▶ Keep |#a(w)−#b(w)| = n on stack in form of 1n$.

▶ Keep the sign of #a(w)−#b(w) in the state:

+ or 0⇒ state q+

− or 0⇒ state q−

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 69

Pushdown Automata Equivalence of CFGs and PDAs

Equivalence of CFGs and PDAs

Thm: The class of languages recognized by PDAs is the CFLs.

I. For every CFG G ,
there is a PDA M
with L(M) = L(G)

II. For every PDA M ,
there is a CFG G
with L(G) = L(M)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 24 / 69

Pushdown Automata From a CFG to a PDA

Proof that every CFL is accepted by some PDA

Let G = (V ,Σ,R,S)

We’ll allow a generalized sort of PDA that can push strings onto stack.

E.g., (q , a, b) 7→ (r , cd)

The corresponding PDA has just 3 states:

qstart ∼ start state

qloop ∼ “main loop” state

qaccept ∼ final state

Stack alphabet = V ∪ Σ ∪ {$}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 25 / 69

Pushdown Automata From a CFG to a PDA

Proof that every CFL is accepted by some PDA

Let G = (V ,Σ,R,S)

We’ll allow a generalized sort of PDA that can push strings onto stack.

E.g., (q , a, b) 7→ (r , cd)

The corresponding PDA has just 3 states:

qstart ∼ start state

qloop ∼ “main loop” state

qaccept ∼ final state

Stack alphabet = V ∪ Σ ∪ {$}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 25 / 69

Pushdown Automata From a CFG to a PDA

CFL⇒ PDA, Continued: The Transitions of the PDA

Transitions:

▶ δ(qstart , ε, ε) = {(qloop ,S$)}

“Start by putting S$ on the stack, & go to qloop”

▶ δ(qloop , ε,A) = {(qloop ,w)} for each rule A→ w

“Remove a variable from the top of the stack and replace it with a
corresponding righthand side”

▶ δ(qloop , σ, σ) = {(qloop , ε)} for each σ ∈ Σ

“Pop a terminal symbol from the stack if it matches the next input
symbol”

▶ δ(qloop , ε, $) = {(qaccept , ε)}.

“Go to accept state if stack contains only $.”
Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 69

Pushdown Automata From a CFG to a PDA

Example

▶ Consider grammar G with rules {S → aSb,S → ε}
(so L(G) = {anbn : n ≥ 0})

▶ Construct PDA

M = ({qstart , qloop , qaccept}, {a, b}, {a, b,S , $}, δ, qstart , {qaccept})

Transition Function δ:

▶ Derivation S ⇒ aSb ⇒ aaSbb ⇒ aabb

Corresponding Computation:

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 69

Pushdown Automata From a CFG to a PDA

The Dual Bottom-Up CFG→ PDA Construction

▶ δ(qstart, ε, ε) = {(qloop, $)}

“Start by putting $ on the stack, & go to qloop”

▶ δ(qloop, σ, ε) = {(qloop, σ)} for each σ ∈ Σ

“Shift input symbols onto the stack”

▶ δ(qloop, ε,w
R) = {(qloop,A) : A→ w) is a rule of G}

“Reduce right-hand sides on the stack to corresponding left-hand
sides”

▶ δ(qloop, ε,S$) = {qaccept, ε)}

“Accept if the stack consists just of S above the bottom-marker”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 69

Pushdown Automata From a PDA to a CFG

Proof that for every PDA M there is a
CFG G such that L(M) = L(G)

▶ First modify PDA M so that
▶ Single accept state.

▶ All accepting computations end with empty stack.

▶ In every step, push a symbol or pop a symbol but not both.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 29 / 69

Pushdown Automata From a PDA to a CFG

Design of the grammar G equivalent to PDA M

▶ Variables: Apq for every two states p, q of M

▶ Goal: Apq generates all strings that can take M from p to q ,
beginning and ending with an empty stack.

▶ Rules:
▶ For all states p, q , r , Apq → AprArq

▶ For states p, q , r , s and σ, τ ∈ Σ,
Apq → σArsτ if there is a stack symbol γ
such that δ(p, σ, ε) contains (r , γ)
and δ(s, τ, γ) contains (q , ε)

▶ For every state p, App → ε

▶ Start variable: Aqstartqaccept

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 30 / 69

Pushdown Automata From a PDA to a CFG

Visualizing the Construction

How to generate all possible strings that could be recognized moving
from state p with an empty stack to q with an empty stack? Two cases:

p q

r

Apr
Arq

Apq → AprArq

p q

r s

σ, ε→ γ τ, γ → ε

Ars

Apq → σArsτ

1. If the stack is also empty in some middle state r ,
trace the path from p → r then r → q

2. Else if p → r pushes γ on the stack and s → q pops it back off,
generate σArsτ .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 31 / 69

Pushdown Automata From a PDA to a CFG

Proof Sketch: the Grammar is Equivalent to the PDA

Claim: Apq
∗⇒ w if and only if w can take M from p to q ,

beginning & ending w/empty stack

⇒ Proof by induction on length of derivation

⇐ Proof by induction on length of computation

▶ Computation of length 0 (base case): Use App → ε

▶ Stack empties sometime in middle of computation:
Use Apq → AprArq

▶ Stack does not empty in middle of computation:
Use Apq → σArsτ

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 69

Pushdown Automata From a PDA to a CFG

Context-free Grammars

STOP: End cgl.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 33 / 69

Pushdown Automata From a PDA to a CFG

Context-free Grammars

Reading: Sipser §2.1 (except Chomsky Normal Form).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 34 / 69

Pushdown Automata Context-free Grammars

Context-free Grammars

▶ Originated as abstract model for:
▶ Structure of natural languages (Chomsky)

▶ Syntactic specification of programming languages
(Backus-Naur Form)

▶ A context-free grammar is a set of generative rules for strings

e.g.

G =
S → aSb

S → ε

▶ A derivation looks like:

S ⇒ aSb ⇒ aaSbb ⇒ aabb

L(G) = {ε, ab, aabb, . . .} = {anbn : n ≥ 0}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 35 / 69

Pushdown Automata Context-free Grammars

Context-free Grammars

▶ Originated as abstract model for:
▶ Structure of natural languages (Chomsky)

▶ Syntactic specification of programming languages
(Backus-Naur Form)

▶ A context-free grammar is a set of generative rules for strings

e.g.

G =
S → aSb

S → ε

▶ A derivation looks like:

S ⇒ aSb ⇒ aaSbb ⇒ aabb

L(G) = {ε, ab, aabb, . . .} = {anbn : n ≥ 0}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 35 / 69

Pushdown Automata Context-free Grammars

Equivalent Formalisms

1. Backus-Naur Form (aka BNF, Backus Normal Form)

due to John Backus and Peter Naur

⟨term⟩ ::= ⟨factor⟩ | ⟨factor⟩ * ⟨term⟩
| ⟨factor⟩ / ⟨term⟩

“|” means “or” in the metalanguage = same left-hand side

2. “Railroad Diagrams”

factor

factor

* /

term

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 36 / 69

Pushdown Automata Context-free Grammars

Equivalent Formalisms

1. Backus-Naur Form (aka BNF, Backus Normal Form)

due to John Backus and Peter Naur

⟨term⟩ ::= ⟨factor⟩ | ⟨factor⟩ * ⟨term⟩
| ⟨factor⟩ / ⟨term⟩

“|” means “or” in the metalanguage = same left-hand side

2. “Railroad Diagrams”

factor

factor

* /

term

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 36 / 69

Pushdown Automata Formal Definitions

Formal Definitions for CFGs

▶ A CFG G = (V ,Σ,R,S)

V = Finite set of variables (or nonterminals)

Σ = The alphabet, a finite set of terminals (V ∩ Σ = ∅).

R = A finite set of rules, each of the form A → w
for A ∈ V and w ∈ (V ∪ Σ)∗.

S = The start variable, a member of V

e.g. ({S}, {a, b}, {S → aSb,S → ε},S)

▶ Derivations: For α, β ∈ (V ∪ Σ)∗ (strings of terminals and nonterminals),

α ⇒G β if α = uAv , β = uwv for some u, v ∈ (V ∪ Σ)∗ and rule A → w .

α
∗⇒G β (“α yields β”) if there is a sequence α0, . . . , αk for k ≥ 0 such that
α0 = α, αk = β, and αi−1 ⇒G αi for each i = 1, . . . , k .

▶ L(G) = {w ∈ Σ∗ : S
∗⇒G w} (strings of terminals only!)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 37 / 69

Pushdown Automata Formal Definitions

Formal Definitions for CFGs

▶ A CFG G = (V ,Σ,R,S)

V = Finite set of variables (or nonterminals)

Σ = The alphabet, a finite set of terminals (V ∩ Σ = ∅).

R = A finite set of rules, each of the form A → w
for A ∈ V and w ∈ (V ∪ Σ)∗.

S = The start variable, a member of V

e.g. ({S}, {a, b}, {S → aSb,S → ε},S)
▶ Derivations: For α, β ∈ (V ∪ Σ)∗ (strings of terminals and nonterminals),

α ⇒G β if α = uAv , β = uwv for some u, v ∈ (V ∪ Σ)∗ and rule A → w .

α
∗⇒G β (“α yields β”) if there is a sequence α0, . . . , αk for k ≥ 0 such that
α0 = α, αk = β, and αi−1 ⇒G αi for each i = 1, . . . , k .

▶ L(G) = {w ∈ Σ∗ : S
∗⇒G w} (strings of terminals only!)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 37 / 69

Pushdown Automata Examples

More examples of CFGs

▶ Arithmetic Expressions

G1:
E → x | y |E ∗ E |E + E | (E)

G2:
E → T |E + T

T → T ∗ F |F
F → (E) | x | y

Q: Which is preferable? Why?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 38 / 69

Pushdown Automata Examples

More examples of CFGs

▶ L = {x ∈ {(,)}∗ : parentheses in x are properly ‘balanced’}.

▶ L = {x ∈ {a, b}∗ : x has the same # of a ’s and b’s}.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 39 / 69

Pushdown Automata Parse Trees

Parse Trees

Derivations in a CFG can be represented by parse trees.

Examples:

Each parse tree corresponds to many derivations, but has unique
leftmost derivation.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 40 / 69

Pushdown Automata Parse Trees

Parsing

Parsing: Given x ∈ L(G), produce a parse tree for x . (Used to
‘interpret’ x . Compilers parse, rather than merely recognize, so they
can assign semantics to expressions in the source language.)

Ambiguity: A grammar is ambiguous if some string has two parse
trees.

Example:

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 41 / 69

Pushdown Automata Parse Trees

Context-free Grammars and Automata

What is the fourth term in the analogy:

Regular Languages : Finite Automata
as

Context-free Languages : ???

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 42 / 69

Pushdown Automata Parse Trees

Regular Grammars

Hint: There is a special kind of CFGs, the regular grammars, that
generate exactly the regular languages.

A CFG is (right-)regular if any occurrence of a nonterminal on the
RHS of a rule is as the rightmost symbol.

Turning a DFA into an equivalent Regular Grammar

▶ Variables are states.

▶ Transition δ(P , σ) = R P R
σ

becomes P → σR

▶ If P is accepting, add rule P → ε

Example: {x : x has an even # of a ’s and an even # of b’s}

Other Direction: Omitted.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 43 / 69

CFL Closure Properties and Non-CF Languages

CFL Closure Properties and Non–Context-Free
Languages

Reading: Sipser §2.3.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 44 / 69

CFL Closure Properties and Non-CF Languages Closure Properties

Closure Properties of CFLs

▶ Thm: The CFLs are closed under
▶ Union

▶ Concatenation

▶ Kleene *

▶ Intersection with a regular language

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 45 / 69

CFL Closure Properties and Non-CF Languages Closure Properties

Intersection of a CFL and a regular language is CF

Pf sketch: Let L1 be CF and L2 be regular

L1 = L(M1), M1 a PDA

L2 = L(M2), M2 a DFA

Q1 = state set of M1

Q2 = state set of M2

Construct a PDA with state set Q1 ×Q2 which keeps track of
computation of both M1 and M2 on input.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 46 / 69

CFL Closure Properties and Non-CF Languages Closure Properties

Q: Why doesn’t this argument work if M1 and M2 are
both PDAs?

In fact, the intersection of two CFLs is not necessarily CF.

And the complement of a CFL is not necessarily CF (Asst 5).

Q: How to prove that languages are not context free?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 47 / 69

CFL Closure Properties and Non-CF Languages Pumping Lemma

Pumping Lemma for CFLs

Lemma: If L is context-free, then there is a number p (the pumping
length) such that any s ∈ L of length at least p can be divided into
s = uvxyz , where

1. uv ixy iz ∈ L for every i ≥ 0,

2. v ̸= ε or y ̸= ε, and

3. |vxy | ≤ p.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 48 / 69

CFL Closure Properties and Non-CF Languages Pumping Lemma

Using the Pumping Lemma to Prove a language
non–context-free

{anbncn : n ≥ 0} is not CF.

aaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbb cccccccccccccccc

What are v , y?

▶ Contain 2 kinds of symbols

▶ Contain only one kind of symbol

⇒ Corollary: CFLs not closed under intersection (why?)

Is the intersection of 2 CFLs or the complement of a CFL
sometimes a CFL?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 49 / 69

CFL Closure Properties and Non-CF Languages Parse Tree Height

Recall: Parse Trees

S → aB | bA | ε
A → aS | bAA
B → bS | aBB

S

a B

a B B

b S b S

a B ε

b S

ε

Parse tree for
aababb, the “yield” of
the tree

Height = max length path from S to a terminal symbol = 6 in above
example

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 50 / 69

CFL Closure Properties and Non-CF Languages Proof of Pumping Lemma

Proof of Pumping Lemma

Show that there exists a p such that any string s of length ≥ p has a
parse tree of the form:

S

u z
A

v y
A

x

S

u z
A

v y
A

v y
A

x

S

u z
A

x

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 51 / 69

CFL Closure Properties and Non-CF Languages Proof of Pumping Lemma

Proof of Pumping Lemma

Show that there exists a p such that any string s of length ≥ p has a
parse tree of the form:

S

u z
A

v y
A

x

S

u z
A

v y
A

v y
A

x

S

u z
A

x

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 51 / 69

CFL Closure Properties and Non-CF Languages Details of Pumping Lemma

Finding “Repetition” in a big parse tree

▶ Since RHS of rules have bounded length, long strings must have
tall parse trees

▶ A tall parse tree must have a path with a repeated nonterminal

▶ Let p = bm + 1, where:

b = max length of RHS of a rule

m = # of variables

▶ Suppose T is the smallest parse tree for a string s ∈ L of length
at least p. Then

Let h = height of T . Then bh ≥ p = bm + 1,

⇒ h > m,

⇒ Path of length h in T has a repeated variable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 52 / 69

CFL Closure Properties and Non-CF Languages Details of Pumping Lemma

Final annoying details

▶ Q: Why is v or y nonempty?

▶ Q: How to ensure |vxy | ≤ p?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 53 / 69

Context-Free Language Recognition

Context-Free Recognition

Reading: Sipser §2.1 (Chomsky Normal Form).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 54 / 69

Context-Free Language Recognition Context-Free Language Recognition

Context-Free Recognition

▶ Goal: Given CFG G and string w to determine if w ∈ L(G)

▶ First attempt: Construct a PDA M from G and run M on w .

▶ Brute-Force Method:

Check all parse trees of height up to some upper limit
depending on G and |w |

Exponentially costly

▶ Better:

1. Transform G into Chomsky normal form (CNF) (once for G)

2. Apply a special algorithm for CNF grammars
(once for each w)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 55 / 69

Context-Free Language Recognition Chomsky Normal Form

Chomsky Normal Form

Def: A grammar is in Chomsky normal form if

▶ the only possible rule with ε as the RHS is S → ε
(Of course, this rule occurs iff ε ∈ L(G))

▶ Every other rule is of the form

1. X → YZ
where X ,Y ,Z are variables

2. X → σ
where X is a variable and σ is a single terminal symbol

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 56 / 69

Context-Free Language Recognition Transforming a CFG into Chomsky Normal Form

Transforming a CFG into Chomsky Normal Form

Definitions:

▶ ε-rule: one of the form X → ε

▶ Long Rule: one of the form X → α where |α| > 2

▶ Unit Rule: one of the form X → Y
where X ,Y ∈ V

▶ Terminal-Generating Rule: one of the form X → α
where α /∈ V ∗ and |α| > 1 (α has at least one terminal)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 57 / 69

Context-Free Language Recognition Transforming a CFG into Chomsky Normal Form

Eliminate non-Chomsky-Normal-Form Rules in Order:

1. All ε-rules, except maybe S → ε

2. All unit rules

3. All long rules

4. All terminal-generating rules

Note: while eliminating rules of type j , we make sure not to reintroduce
rules of type i < j .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 58 / 69

Context-Free Language Recognition Transforming a CFG into Chomsky Normal Form

Eliminating ε-Rules

0. Ensure start variable does not appear on the RHS of any rule
(by adding new start variable with rule S → Sold if necessary).

1. To eliminate ε-rules, repeatedly do the following:

a. Pick a ε-rule Y → ε and remove it.

b. Given a rule X → α, where α contains n occurrences of Y ,
replace it with 2n rules in which 0, . . . ,n occurrences are
replaced by ε. (Do not add X → ε if previously removed.)
e.g.

X → aYZbY ⇒

X → aYZbY
X → aZbY
X → aYZb
X → aZb

(Why does this terminate?)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 59 / 69

Context-Free Language Recognition Transforming a CFG into Chomsky Normal Form

Eliminating ε-Rules

0. Ensure start variable does not appear on the RHS of any rule
(by adding new start variable with rule S → Sold if necessary).

1. To eliminate ε-rules, repeatedly do the following:

a. Pick a ε-rule Y → ε and remove it.

b. Given a rule X → α, where α contains n occurrences of Y ,
replace it with 2n rules in which 0, . . . ,n occurrences are
replaced by ε. (Do not add X → ε if previously removed.)
e.g.

X → aYZbY ⇒

X → aYZbY
X → aZbY
X → aYZb
X → aZb

(Why does this terminate?)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 59 / 69

Context-Free Language Recognition Transforming a CFG into Chomsky Normal Form

Eliminating Unit and Long Rules

2. To eliminate unit rules, repeatedly do the following:

a. Pick a unit rule A→ B and remove it.

b. For every rule B → u, add rule A→ u unless this is a unit rule that
was previously removed.

3. To eliminate long rules, repeatedly do the following:

a. Remove a long rule A→ u1u2 · · · uk , where each ui ∈ V ∪ Σ and
k ≥ 3.

b. Replace with rules A→ u1A1,A1 → u2A2, . . . ,Ak−2 → uk−1uk ,
where A1, . . . ,Ak−2 are newly introduced variables used only in
these rules.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 60 / 69

Context-Free Language Recognition Transforming a CFG into Chomsky Normal Form

Eliminating Terminal-Generating Rules

4. To eliminate terminal-generating rules:

a. For each terminal a introduce a new nonterminal A.

b. Add the rules A→ a

c. “Capitalize” existing rules, e.g.
replace X → aY
with X → AY

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 61 / 69

Context-Free Language Recognition Example of Transformation

Example of Transformation to Chomsky Normal Form

Starting grammar:

S → XX
X → aXb | ε

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 62 / 69

Context-Free Language Recognition CNF Recognition Algorithm

Benefit of CNF for Deciding if w ∈ L(G)

▶ Observation: If S ⇒ XY ⇒∗ w , then w = uv , X ⇒∗ u, Y ⇒∗ v
where u, v are strictly shorter than w .

▶ Divide and Conquer: can decide whether S yields w by
recursively determining which variables yield substrings of w .

▶ Dynamic Programming: record answers to all subproblems to
avoid repeating work.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 63 / 69

Context-Free Language Recognition CNF Recognition Algorithm

Determining w ∈ L(G), for G in CNF

Let w = a1 · · · an , ai ∈ Σ.
Determine sets Sij (1 ≤ i ≤ j ≤ n):

Sij = {X : X
∗⇒ ai · · · aj ,X variable of G}

S11

S12 S22

S13 S23 S33

S24 S34 S44

S1n Snn

a1

a2

a3

an

w ∈ L(G) iff start symbol ∈ S1n
Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 64 / 69

Context-Free Language Recognition CNF Recognition Algorithm

Filling in the Matrix

▶ Calculate Sij by induction on j − i

▶ (j − i = 0)

Sii = {X : X → ai is a rule of G}

▶ (j − i > 0)

X ∈ Sij iff ∃ rule X → YZ

∃k : i ≤ k < j

such that Y ∈ Sik

Z ∈ Sk+1,j

e.g. w = abaabb

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 65 / 69

Context-Free Language Recognition CNF Recognition Algorithm

The Chomsky Normal Form Parsing Algorithm

for i ← 1 to n do

Sii = {X : X → ai is a rule }

for d ← 1 to n − 1 do

for i ← 1 to n − d do

Si ,i+d ←
i+d−1⋃
j=i

{
X : X → YZ is a rule,
Y ∈ Sij ,Z ∈ Sj+1,i+d

}
Complexity: O(n3).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 66 / 69

Context-Free Language Recognition CNF Recognition Algorithm

Of what does this triply nested loop remind you?

▶ Matrix Multiplication

▶ In fact, better matrix multiplication algorithms yield (asymptotically)
better general context free parsing algorithms

▶ Strassen’s algorithm requires O(n2.81) instead of O(n3)
multiplications

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 67 / 69

Context-Free Language Recognition CNF Recognition Algorithm

Of what does this triply nested loop remind you?

▶ Matrix Multiplication

▶ In fact, better matrix multiplication algorithms yield (asymptotically)
better general context free parsing algorithms

▶ Strassen’s algorithm requires O(n2.81) instead of O(n3)
multiplications

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 67 / 69

Context-Free Language Recognition CNF Recognition Algorithm

Summary of Context-Free Recognition

▶ CFL to PDA reduction yields nondeterministic automaton

▶ By use of Chomsky Normal Form and dynamic programming,
there is a general O(n3) non-stack-based algorithm

▶ The deterministic CFLs are the languages recognizable by
deterministic PDAs

▶ E.g. {wcwR : w ∈ {a, b}∗} is a deterministic CFL but
{wwR : w ∈ {a, b}∗} (even palindromes) is not

▶ Methods used in compilers are deterministic stack-based
algorithms, requiring that the source language be deterministic CF
or a special type of deterministic CF (LR(k), etc.)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 68 / 69

Context-Free Language Recognition Beyond Context-Free

Beyond Context-Free

▶ A Context-Sensitive Grammar allows rules of the form α→ β,
where α and β are strings and |α| ≤ |β|, so long as α contains at
least one nonterminal.

▶ The possibility of using rules such as aB → aDE makes the
grammar “sensitive to context”

▶ Is there an algorithm for determining whether w ∈ L(G) where G
is a CSG?

▶ But the field moved, and now we also move, from syntactic
structures to computational difficulty

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 69 / 69

	Languages
	Context-free Grammars
	Formal Definitions
	Examples
	Parse Trees
	Examples
	Chomsky Normal Form
	Transforming a CFG into Chomsky Normal Form
	Example of Transformation

	Pushdown Automata
	Pushdown Automata
	Formal Definition
	Computation by a PDA
	Equivalence of CFGs and PDAs
	From a CFG to a PDA
	From a PDA to a CFG
	Context-free Grammars
	Formal Definitions
	Examples
	Parse Trees
	Relation to Regular Languages

	CFL Closure Properties and Non-CF Languages
	Closure Properties
	Pumping Lemma
	Parse Tree Height
	Proof of Pumping Lemma
	Details of Pumping Lemma

	Context-Free Language Recognition
	Context-Free Language Recognition
	Chomsky Normal Form
	Transforming a CFG into Chomsky Normal Form
	Example of Transformation
	CNF Recognition Algorithm
	Beyond Context-Free

