Computational Theory Turing Machines

Curtis Larsen

Utah Tech University—Computing

Fall 2024

Adapted from notes by Russ Ross

Curtis Larsen (Utah Tech University)

CS 3530

Turing Machines

Reading: Sipser §3.1.

Status Update

- Regular languages: DFA, NFA, RE, PL for RL
- Context-free languages: CFG, PDA, PL for CFL
- Turing Machines:
 - Decidable languages
 - Recognizable languages
 - Unrecognizable languages

Status Update

The Basic Turing Machine

- Head can both read and write, and move in both directions.
- Tape has a beginning on the left, and unbounded length.
- ► □ is the blank symbol. All but a finite number of tape squares are blank.
- Accept and reject states take effect immediately, not waiting for end of input.

Formal Definition of a TM

A (deterministic) Turing Machine (TM) is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where:

- Q is a finite set of states
- Σ is the finite **input alphabet**; $\Box \notin \Sigma$
- Γ is the finite tape alphabet; $\sqcup \in \Gamma$, $\Sigma \subset \Gamma$
- $\blacktriangleright \ \delta: \ Q \times \Gamma \to \ Q \times \Gamma \times \{L, R\}$
- $q_0 \in Q$ is the start state
- $q_{\text{accept}} \in Q$ is the **accept state**
- $q_{\text{reject}} \in Q$ is the **reject state**; $q_{\text{reject}} \neq q_{\text{accept}}$

The transition function

$Q\times\Gamma\to Q\times\Gamma\times\{L,R\}$

- L and R are "move left" and "move right"
- $\blacktriangleright \ \delta(q,b) = (r,c,R)$
 - Rewrite b as c in current cell
 - Switch from state q to state r
 - And move right
- $\blacktriangleright \ \delta(q,b) = (r,c,L)$
 - Same as *R*, but move left
 - Unless at left end of tape, in which case stay put

Computation of TMs

- A configuration is uqv, where $q \in Q$, $u, v \in \Gamma^*$.
 - Tape contents = uv followed by all blanks
 - State = q
 - Head on first symbol of v.
 - Don't explicitly write the infinite number of \Box at the end of v.
- Start configuration $= q_0 w$, where w is input.
- One step of computation: (configuration C_i yields C_{i+1})
 - Configuration = uaqbv; $u, v \in \Gamma^*$; $a, b \in \Gamma$; $q \in Q$.
 - ► $uaqbv \rightarrow uacrv$, if $\delta(q, b) = (r, c, R)$; $b, c \in \Gamma$; $q, r \in Q$.
 - ► $uaqbv \rightarrow uracv$, if $\delta(q, b) = (r, c, L)$; $b, c \in \Gamma$; $q, r \in Q$.
 - $qbv \rightarrow rcv$, if $\delta(q, b) = (r, c, L)$; $b, c \in \Gamma$; $q, r \in Q$.

▶ If $r \in \{q_{\text{accept}}, q_{\text{reject}}\}$, computation halts.

TMs and Languages

TM Results

- *M* accepts *w* if there is a sequence of configurations C_1, \ldots, C_k such that
 - 1. $C_1 = q_0 w$.
 - **2**. C_i yields C_{i+1} for each *i*.
 - 3. C_k is an accepting configuration (i.e. state of *M* is q_{accept}).
- *M* rejects *w* if there is a sequence of configurations C_1, \ldots, C_k such that
 - 1. $C_1 = q_0 w$.
 - **2**. C_i yields C_{i+1} for each *i*.
 - 3. C_k is a rejecting configuration (i.e. state of *M* is q_{reject}).
- M halts on w if it accepts or rejects w.
- M loops on w if it does not halt on w.

TMs and Language Membership

- $L(M) = \{w | M \text{ accepts } w\}.$
- L is **Turing-recognizable** if L = L(M) for some TM M, and:
 - $w \in L \Rightarrow M$ halts on w in state q_{accept} .
 - ▶ $w \notin L \Rightarrow M$ halts on w in state q_{reject} OR M never halts (it "loops").
- ▶ *L* is (Turing-)?decidable if L = L(M) for some TM *M*, and:
 - $w \in L \Rightarrow M$ halts on w in state q_{accept} .
 - $w \notin L \Rightarrow M$ halts on w in state q_{reject} .

$w \in L \text{ or } w \notin L$

Machine Descriptions

Example Language

- ▶ $B = \{w \# w | w \in \{0, 1\}^*\}$
- B is not context-free. (Can be shown with CFL PL)
- ▶ *B* is decidable. (Can be shown with TM)

Formal Descriptions

Formal description of M_B , where $L(M_B) = B$.

- $\blacktriangleright \quad Q = \{q_0, ..., q_{\mathsf{accept}}, q_{\mathsf{reject}}\}$
- ► $\Sigma = \{0, 1, \#\}$
- ► $\Gamma = \{0, 1, \#, x, \sqcup\}$
- ▶ δ:...

OR state diagram.

Implementation-level Descriptions

- Let $M_B =$ "On input string w:
 - 1. Until # is read.
 - 2. Remember the symbol read, write *x*.
 - 3. Move right until # or \sqcup seen.
 - 4. If \sqcup , reject.
 - 5. Move right while *x* seen.
 - 6. If symbol read is \Box or not remembered symbol, *reject*.
 - 7. Write x.
 - 8. Move left until #.
 - 9. Move left until x.
- 10. Move right.
- 11. Move right until something other than x is read.
- 12. If symbol read is ⊔, accept. Otherwise, reject."

High-level Descriptions

Let $M_B =$ "On input string w:

- 1. If there is no #, *reject*.
- 2. For each symbol left of the *#*, match against same position right of the *#*. If there is a mismatch, *reject*.
- 3. If there are extra non-blank symbols right of the #, *reject*.
- 4. accept."

Multitape Machines

For a k tape machine:

 $\delta : \, Q \times \Gamma^k \to \, Q \times \Gamma^k \times \{L,R,S\}^k$

Multitape Machines

Theorem 3.13

Every multitape Turing machine has an equivalent single-tape Turing machine.

Proof?

Variants

Nondeterministic Machines

$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$

Variants

Nondeterministic Machines

Theorem 3.16

Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

Proof?

Algorithms

The Church-Turing Thesis

Figure 3.22

Our *intuitive notion of algorithms* is equal to *Turing machine algorithms*.

Sample problem

Let $A = \{\langle G \rangle | G \text{ is a connected undirected graph } \}$.

Is A decidable?

Sample problem

Let $A = \{ \langle G \rangle | G \text{ is a connected undirected graph } \}.$

Is A decidable?

Let M = "On input $\langle G \rangle$, the encoding of a graph:

- 1. Select the first node of G and mark it.
- 2. Repeat the following state until no new nodes are marked:
- 3. For each node in *G*, mark it if it is attached by an edge to a node that is already marked.
- 4. Scan all nodes of *G* to determine whether they are all marked. If the are *accept*; otherwise *reject*."

DEFINITION 3.3 Turing Machine is $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$

- **DEFINITION 3.3** Turing Machine is $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
- **DEFINITION 3.5** Turing-recognizable.

- **DEFINITION 3.3** Turing Machine is $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
- **DEFINITION 3.5** Turing-recognizable.
- **DEFINITION 3.6** Turing-decidable (decidable).

- **DEFINITION 3.3** Turing Machine is $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
- **DEFINITION 3.5** Turing-recognizable.
- **DEFINITION 3.6** Turing-decidable (decidable).
- **THEOREM 3.13** Every multi-tape Turing machine has an equivalent single-tape Turing machine.

- **DEFINITION 3.3** Turing Machine is $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
- **DEFINITION 3.5** Turing-recognizable.
- **DEFINITION 3.6** Turing-decidable (decidable).
- THEOREM 3.13 Every multi-tape Turing machine has an equivalent single-tape Turing machine.
- COROLLARY 3.15 A language is Turing-recognizable if and only if some multi-tape Turing machine recognizes it.

- **DEFINITION 3.3** Turing Machine is $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
- **DEFINITION 3.5** Turing-recognizable.
- **DEFINITION 3.6** Turing-decidable (decidable).
- **THEOREM 3.13** Every multi-tape Turing machine has an equivalent single-tape Turing machine.
- COROLLARY 3.15 A language is Turing-recognizable if and only if some multi-tape Turing machine recognizes it.
- COROLLARY 3.XX A language is decidable if and only if some multi-tape Turing machine decides it.

- **DEFINITION 3.3** Turing Machine is $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
- **DEFINITION 3.5** Turing-recognizable.
- **DEFINITION 3.6** Turing-decidable (decidable).
- **THEOREM 3.13** Every multi-tape Turing machine has an equivalent single-tape Turing machine.
- COROLLARY 3.15 A language is Turing-recognizable if and only if some multi-tape Turing machine recognizes it.
- COROLLARY 3.XX A language is decidable if and only if some multi-tape Turing machine decides it.
- THEOREM 3.16 Every non-deterministic Turing machine has an equivalent deterministic Turing machine.

- **DEFINITION 3.3** Turing Machine is $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
- **DEFINITION 3.5** Turing-recognizable.
- **DEFINITION 3.6** Turing-decidable (decidable).
- **THEOREM 3.13** Every multi-tape Turing machine has an equivalent single-tape Turing machine.
- COROLLARY 3.15 A language is Turing-recognizable if and only if some multi-tape Turing machine recognizes it.
- COROLLARY 3.XX A language is decidable if and only if some multi-tape Turing machine decides it.
- THEOREM 3.16 Every non-deterministic Turing machine has an equivalent deterministic Turing machine.
- COROLLARY 3.18 A language is Turing-recognizable if and only if some non-deterministic Turing machine recognizes it.

- **DEFINITION 3.3** Turing Machine is $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
- **DEFINITION 3.5** Turing-recognizable.
- **DEFINITION 3.6** Turing-decidable (decidable).
- THEOREM 3.13 Every multi-tape Turing machine has an equivalent single-tape Turing machine.
- COROLLARY 3.15 A language is Turing-recognizable if and only if some multi-tape Turing machine recognizes it.
- COROLLARY 3.XX A language is decidable if and only if some multi-tape Turing machine decides it.
- **THEOREM 3.16** Every non-deterministic Turing machine has an equivalent deterministic Turing machine.
- COROLLARY 3.18 A language is Turing-recognizable if and only if some non-deterministic Turing machine recognizes it.
- COROLLARY 3.19 A language is decidable if and only if some non-deterministic Turing machine decides it.

- **DEFINITION 3.3** Turing Machine is $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
- **DEFINITION 3.5** Turing-recognizable.
- **DEFINITION 3.6** Turing-decidable (decidable).
- THEOREM 3.13 Every multi-tape Turing machine has an equivalent single-tape Turing machine.
- COROLLARY 3.15 A language is Turing-recognizable if and only if some multi-tape Turing machine recognizes it.
- COROLLARY 3.XX A language is decidable if and only if some multi-tape Turing machine decides it.
- **THEOREM 3.16** Every non-deterministic Turing machine has an equivalent deterministic Turing machine.
- COROLLARY 3.18 A language is Turing-recognizable if and only if some non-deterministic Turing machine recognizes it.
- COROLLARY 3.19 A language is decidable if and only if some non-deterministic Turing machine decides it.
- FIGURE 3.22 The Church-Turing Thesis states that a Turing machine and an algorithm are equivalent.

Curtis Larsen (Utah Tech University)