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Decidability

Decidable Languages

Reading: Sipser §4.1.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 2 / 29



Decidability Status Update

Recognizable and Decidable

▶ L(M ) = {w : M accepts w}.

▶ L is Turing-recognizable if L = L(M ) for some TM M , i.e.
▶ w ∈ L ⇒ M halts on w in state qaccept.

▶ w /∈ L ⇒ M halts on w in state qreject OR M never halts (it “loops”).

▶ L is decidable if L = L(M ) for some TM M , i.e.
▶ w ∈ L ⇒ M halts on w in state qaccept.

▶ w /∈ L ⇒ M halts on w in state qreject.
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Decidability Status Update

Problems as Turing Machine Languages

▶ Encoding arbitrary objects: ⟨O⟩ is a suitable string representation
of O .

▶ Problems can be encoded as languages:

Let G be an undirected graph. We want to know if G is connected.
We can state this as the language:

A = {⟨G⟩|G is a connected undirected graph }

▶ The Turing machine that processes input has a (usually) hidden
step that decodes and verifies the encoding, rejecting if the
verification fails.
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Decidability Decidable Examples

ADFA

▶ Language:
ADFA = {⟨B ,w⟩|B is a DFA that accepts input string w}

▶ Theorem 4.1: ADFA is a decidable language.

▶ Machine: Let M = “On input ⟨B ,w⟩, where B is a DFA and w is a
string:

1. Simulate B on input w .
2. If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state, reject.”

▶ Proof Sketch: The input is finite. Every step of the simulation
consumes one input symbol. The simulation will terminate. M only
needs to track the current input position, and the current state.
When finished, final state’s classification is all that is needed.
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Decidability Decidable Examples

ANFA

▶ Language:
ANFA = {⟨B ,w⟩|B is an NFA that accepts input string w}

▶ Theorem 4.2: ANFA is a decidable language.

▶ Machine: Let N = “On input ⟨B ,w⟩, where B is an NFA and w is
a string:

1. Convert B to an equivalent DFA C , using the procedure from
Theorem 1.39.

2. Run M from Theorem 4.1 on input ⟨C ,w⟩.
3. If M accepts, accept; otherwise, reject.”

▶ Proof Sketch: The procedure from Theorem 1.39 is finite. M is a
decider. N must also be a decider.
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Decidability Decidable Examples

AREX

▶ Language:
AREX = {⟨R,w⟩|R is a regular expression that generates string w}

▶ Theorem 4.3: AREX is a decidable language.

▶ Machine: Let P = “On input ⟨R,w⟩, where R is a regular
expression and w is a string:

1. Convert R to an equivalent NFA B , using the procedure from
Theorem 1.54.

2. Run N from Theorem 4.2 on input ⟨B ,w⟩.
3. If N accepts, accept; otherwise, reject.”

▶ Proof Sketch: The procedure from Theorem 1.54 is finite. N is a
decider. P must also be a decider.
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Decidability Decidable Examples

EDFA

▶ Language: EDFA = {⟨A⟩|A is a DFA and L(A) = ∅}

▶ Theorem 4.4: EDFA is a decidable language.

▶ Machine: Let Tbad = “On input ⟨A⟩, where A is a DFA:

1. For each string w ∈ Σ∗:
2. Run M on ⟨A,w⟩.
3. If M accepts, reject.
4. If no w is accepted, accept.”

▶ Proof Flaw?: What is the flaw in this machine?
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Decidability Decidable Examples

EDFA

▶ Language: EDFA = {⟨A⟩|A is a DFA and L(A) = ∅}

▶ Theorem 4.4: EDFA is a decidable language.

▶ Machine: Let T = “On input ⟨A⟩, where A is a DFA:

1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any state

that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

▶ Proof Sketch: The number of states is finite. The loop will
terminate. T is a decider.
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Decidability Decidable Examples

EQDFA

▶ Language:
EQDFA = {⟨A,B⟩|A and B are DFAs and L(A) = L(B)}

▶ Theorem 4.5: EQDFA is a decidable language.

▶ Machine: Let Fbad = “On input ⟨A,B⟩, where A and B are DFAs:

1. For each w ∈ Σ∗:
2. Run M from Theorem 4.1 on ⟨A,w⟩ and ⟨B ,w⟩.
3. If the results of the two runs differ, reject.
4. If all results match, accept”

▶ Proof Flaw?: What is the flaw with this machine?
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Decidability Decidable Examples

EQDFA

▶ Language:
EQDFA = {⟨A,B⟩|A and B are DFAs and L(A) = L(B)}

▶ Theorem 4.5: EQDFA is a decidable language.

▶ Machine: Let F = “On input ⟨A,B⟩, where A and B are DFAs:

1. Construct DFA C to recognize
L(C ) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)).

2. Run T from Theorem 4.4 on ⟨C ⟩.
3. If T accepts, accept; otherwise, reject.”

▶ Proof Sketch: The algorithms used to construct C are from
chapter 1, and all are finite. This relies on the closure of regular
languages under complement, intersection and union. Draw a
sketch to illustrate the resulting set.
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Decidability Decidable Examples

ACFG

▶ Language: ACFG = {⟨G ,w⟩|G is a CFG that generates string w}

▶ Theorem 4.7: ACFG is a decidable language.

▶ Machine: Let Sbad = “On input ⟨G ,w⟩, where G is a CFG and w is
a string:

1. Generate all derivations of G .
2. If any of these derivations match w , accept; otherwise, reject.”

▶ Proof Flaw?: What is the flaw in this machine?
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Decidability Decidable Examples

ACFG

▶ Language: ACFG = {⟨G ,w⟩|G is a CFG that generates string w}

▶ Theorem 4.7: ACFG is a decidable language.

▶ Machine: Let S = “On input ⟨G ,w⟩, where G is a CFG and w is a
string:

1. Convert G to an equivalent grammar in Chomsky normal form.
2. Generate all derivations with 2n − 1 steps, where n = |w |. If n = 0,

generate length 1 derivations.
3. If any of these derivations match w , accept; otherwise, reject.”

▶ Proof Sketch: The Chomsky normal form conversion is finite. The
2n − 1 proof is in chapter 2 problems. This makes the number of
strings generated finite.
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Decidability Decidable Examples

ECFG

▶ Language: ECFG = {⟨G⟩|G is a CFG and L(G) = ∅}

▶ Theorem 4.8: ECFG is a decidable language.

▶ Machine: Let R = “On input ⟨G⟩, where G is a CFG:

1. Mark all terminal symbols in G .
2. Repeat until no new variables get marked.
3. Mark any variable A where G has a rule A → U1U2 · · ·Uk and

each symbol U1, ...,Uk is marked.
4. If the start variable is not marked, accept; otherwise, reject.”

▶ Proof Sketch: The number of symbols is finite. The loop will
terminate in a finite amount of time. R is a decider.
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Decidability Decidable Examples

EQCFG

▶ Language:
EQCFG = {⟨G ,H ⟩|G and H are CFGs and L(G) = L(H )}

▶ Discussion:

Why not use the strategy from EQDFA,
L(C ) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))?

▶ The class of context-free languages is not closed under
complementation nor under intersection.

▶ EQCFG is not decidable. Proof to come later.
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Decidability Decidable Examples

Context-free languages are decidable

▶ Theorem 4.9: Every context-free language is decidable.

▶ Machine: Let MGbad = “On input ⟨G⟩ and string w :

1. Convert G into PDA B .
2. Simulate B on input w .
3. If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state, reject.”

▶ Proof Flaw?: What is the flaw in this machine?

▶ Hint: Deciders must halt.

▶ Hint: Why can we not guarantee that the simulation of B will halt?
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Decidability Decidable Examples

Context-free languages are decidable

▶ Theorem 4.9: Every context-free language is decidable.

▶ Machine: Let MG = “On input string w :

1. Run S from Theorem 4.7 on input ⟨G ,w⟩.
2. If S accepts, accept; otherwise, reject.”

▶ Proof Sketch: The only work is to encode the finite grammar G .
MG is a decider.
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Undecidability

Undecidable Languages

Reading: Sipser §4.2.
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Undecidability The Halting Problem

ATM is recognizable

▶ Language:
ATM = {⟨M ,w⟩|M is a Turing Machine and M accepts w}

▶ Theorem: ATM is recognizable.

▶ Machine: Let U = “On input ⟨M ,w⟩, where M is a TM and w is a
string:

1. Simulate M on input w .
2. If M enters its accept state, accept; if M enters its reject state,

reject.”

▶ Proof Sketch: What are the possible outcomes? If M accepts w ,
U will accept. If M does not accept w , M will either reject or loop,
and U will either reject or loop. These are the conditions for a
recognizer TM. U recognizes ATM.
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Undecidability The Halting Problem

ATM is undecidable

▶ Language:
ATM = {⟨M ,w⟩|M is a Turing Machine and M accepts w}

▶ Theorem 4.11: ATM is undecidable.

▶ How can we prove undecidability? Any ideas from the way we
prove not context-free, or not regular?
Assume it is decidable, then show that assumption leads to a
contradiction.
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Undecidability The Halting Problem

ATM is undecidable

▶ Assume ATM is decidable → Let H be a decider for ATM.

H =

{
accept if M accepts w
reject if M does not accept w

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept if M does not accept ⟨M ⟩
reject if M accepts ⟨M ⟩
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Undecidability The Halting Problem

ATM is undecidable

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept if M does not accept ⟨M ⟩
reject if M accepts ⟨M ⟩

▶ What is the result of D(⟨D⟩)?

D(⟨D⟩) =
{

accept if D does not accept ⟨D⟩
reject if D accepts ⟨D⟩

▶ This contradiction proves our assumption of “ATM is decidable and
H exists as a decider for ATM” is false. ATM is not decidable.
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Undecidability Unrecognizable Languages

Correspondence
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Undecidability Unrecognizable Languages

Special varieties of functions
S

T

1-1:
s1 ̸= s2 ⇒
f (s1) ̸= f (s2)

S

T

Onto:
For every t ∈ T
there is an s ∈ S
such that f (s) = t

S

T

Bijection:
1-1 and onto
“1-1 Correspondence”

Formal definition of cardinality: S has (finite) cardinality n ∈ N
iff there is a bijection f : {1, . . . ,n} → S .
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Undecidability Unrecognizable Languages

Size of a set
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Undecidability Unrecognizable Languages

co-Turing-recognizable

▶ Definition: Language A is co-Turing-recognizable if it is the
complement of a Turing-recognizable language.

▶ Alt. Definition: Language A is co-Turing-recognizable if A is
Turing-recognizable.

▶ Alt. Definition: Language A is co-Turing-recognizable if A is
Turing-recognizable.
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Undecidability Unrecognizable Languages

Decidable, Turing-recognizable, and
co-Turing-recognizable
▶ Theorem 4.22: A language is decidable if and only if it is

Turing-recognizable and co-Turing-recognizable.

▶ Proof:
▶ Part 1: If language A is decidable, then it is Turing-recognizable

and co-Turing-recognizable. All decidable languages are
Turing-recognizable, due to the accept requirement. The
complement of a decidable language is also decidable, by
swapping accept and reject results.

▶ Part 2: If language A is Turing-recognizable and
co-Turing-recognizable, then it is decidable. If A is
Turing-recognizable by M1, and A is Turing-recognizable by M2,
then we can make a decider for A.
Machine: Let M = “On input w :

1. Run both M1 and M2 on input w in parallel.
2. If M1 accepts, accept; if M2 accepts, reject.”
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Undecidability Unrecognizable Languages

An unrecognizable language

▶ Theorem 4.23: ATM is not Turing-recognizable.

▶ Proof: ATM is Turing-recognizable (by unnamed Theorem). By
Theorem 4.22, if ATM were Turing-recognizable, then ATM would
be decidable. ATM is undecidable (by Theorem 4.11).
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Undecidability Unrecognizable Languages

Language Nesting
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