
Computational Theory
Decidability

Curtis Larsen

Utah Tech University—Computing

Fall 2024

Adapted from notes by Russ Ross

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 1 / 29

Decidability

Decidable Languages

Reading: Sipser §4.1.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 2 / 29

Decidability Status Update

Recognizable and Decidable

▶ L(M) = {w : M accepts w}.

▶ L is Turing-recognizable if L = L(M) for some TM M , i.e.
▶ w ∈ L ⇒ M halts on w in state qaccept.

▶ w /∈ L ⇒ M halts on w in state qreject OR M never halts (it “loops”).

▶ L is decidable if L = L(M) for some TM M , i.e.
▶ w ∈ L ⇒ M halts on w in state qaccept.

▶ w /∈ L ⇒ M halts on w in state qreject.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 3 / 29

Decidability Status Update

Problems as Turing Machine Languages

▶ Encoding arbitrary objects: ⟨O⟩ is a suitable string representation
of O .

▶ Problems can be encoded as languages:

Let G be an undirected graph. We want to know if G is connected.
We can state this as the language:

A = {⟨G⟩|G is a connected undirected graph }

▶ The Turing machine that processes input has a (usually) hidden
step that decodes and verifies the encoding, rejecting if the
verification fails.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 4 / 29

Decidability Decidable Examples

ADFA

▶ Language:
ADFA = {⟨B ,w⟩|B is a DFA that accepts input string w}

▶ Theorem 4.1: ADFA is a decidable language.

▶ Machine: Let M = “On input ⟨B ,w⟩, where B is a DFA and w is a
string:

1. Simulate B on input w .
2. If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state, reject.”

▶ Proof Sketch: The input is finite. Every step of the simulation
consumes one input symbol. The simulation will terminate. M only
needs to track the current input position, and the current state.
When finished, final state’s classification is all that is needed.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 5 / 29

Decidability Decidable Examples

ADFA

▶ Language:
ADFA = {⟨B ,w⟩|B is a DFA that accepts input string w}

▶ Theorem 4.1: ADFA is a decidable language.

▶ Machine: Let M = “On input ⟨B ,w⟩, where B is a DFA and w is a
string:

1. Simulate B on input w .
2. If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state, reject.”

▶ Proof Sketch: The input is finite. Every step of the simulation
consumes one input symbol. The simulation will terminate. M only
needs to track the current input position, and the current state.
When finished, final state’s classification is all that is needed.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 5 / 29

Decidability Decidable Examples

ADFA

▶ Language:
ADFA = {⟨B ,w⟩|B is a DFA that accepts input string w}

▶ Theorem 4.1: ADFA is a decidable language.

▶ Machine: Let M = “On input ⟨B ,w⟩, where B is a DFA and w is a
string:

1. Simulate B on input w .
2. If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state, reject.”

▶ Proof Sketch: The input is finite. Every step of the simulation
consumes one input symbol. The simulation will terminate. M only
needs to track the current input position, and the current state.
When finished, final state’s classification is all that is needed.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 5 / 29

Decidability Decidable Examples

ANFA

▶ Language:
ANFA = {⟨B ,w⟩|B is an NFA that accepts input string w}

▶ Theorem 4.2: ANFA is a decidable language.

▶ Machine: Let N = “On input ⟨B ,w⟩, where B is an NFA and w is
a string:

1. Convert B to an equivalent DFA C , using the procedure from
Theorem 1.39.

2. Run M from Theorem 4.1 on input ⟨C ,w⟩.
3. If M accepts, accept; otherwise, reject.”

▶ Proof Sketch: The procedure from Theorem 1.39 is finite. M is a
decider. N must also be a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 6 / 29

Decidability Decidable Examples

ANFA

▶ Language:
ANFA = {⟨B ,w⟩|B is an NFA that accepts input string w}

▶ Theorem 4.2: ANFA is a decidable language.

▶ Machine: Let N = “On input ⟨B ,w⟩, where B is an NFA and w is
a string:

1. Convert B to an equivalent DFA C , using the procedure from
Theorem 1.39.

2. Run M from Theorem 4.1 on input ⟨C ,w⟩.
3. If M accepts, accept; otherwise, reject.”

▶ Proof Sketch: The procedure from Theorem 1.39 is finite. M is a
decider. N must also be a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 6 / 29

Decidability Decidable Examples

ANFA

▶ Language:
ANFA = {⟨B ,w⟩|B is an NFA that accepts input string w}

▶ Theorem 4.2: ANFA is a decidable language.

▶ Machine: Let N = “On input ⟨B ,w⟩, where B is an NFA and w is
a string:

1. Convert B to an equivalent DFA C , using the procedure from
Theorem 1.39.

2. Run M from Theorem 4.1 on input ⟨C ,w⟩.
3. If M accepts, accept; otherwise, reject.”

▶ Proof Sketch: The procedure from Theorem 1.39 is finite. M is a
decider. N must also be a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 6 / 29

Decidability Decidable Examples

AREX

▶ Language:
AREX = {⟨R,w⟩|R is a regular expression that generates string w}

▶ Theorem 4.3: AREX is a decidable language.

▶ Machine: Let P = “On input ⟨R,w⟩, where R is a regular
expression and w is a string:

1. Convert R to an equivalent NFA B , using the procedure from
Theorem 1.54.

2. Run N from Theorem 4.2 on input ⟨B ,w⟩.
3. If N accepts, accept; otherwise, reject.”

▶ Proof Sketch: The procedure from Theorem 1.54 is finite. N is a
decider. P must also be a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 7 / 29

Decidability Decidable Examples

AREX

▶ Language:
AREX = {⟨R,w⟩|R is a regular expression that generates string w}

▶ Theorem 4.3: AREX is a decidable language.

▶ Machine: Let P = “On input ⟨R,w⟩, where R is a regular
expression and w is a string:

1. Convert R to an equivalent NFA B , using the procedure from
Theorem 1.54.

2. Run N from Theorem 4.2 on input ⟨B ,w⟩.
3. If N accepts, accept; otherwise, reject.”

▶ Proof Sketch: The procedure from Theorem 1.54 is finite. N is a
decider. P must also be a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 7 / 29

Decidability Decidable Examples

AREX

▶ Language:
AREX = {⟨R,w⟩|R is a regular expression that generates string w}

▶ Theorem 4.3: AREX is a decidable language.

▶ Machine: Let P = “On input ⟨R,w⟩, where R is a regular
expression and w is a string:

1. Convert R to an equivalent NFA B , using the procedure from
Theorem 1.54.

2. Run N from Theorem 4.2 on input ⟨B ,w⟩.
3. If N accepts, accept; otherwise, reject.”

▶ Proof Sketch: The procedure from Theorem 1.54 is finite. N is a
decider. P must also be a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 7 / 29

Decidability Decidable Examples

EDFA

▶ Language: EDFA = {⟨A⟩|A is a DFA and L(A) = ∅}

▶ Theorem 4.4: EDFA is a decidable language.

▶ Machine: Let Tbad = “On input ⟨A⟩, where A is a DFA:

1. For each string w ∈ Σ∗:
2. Run M on ⟨A,w⟩.
3. If M accepts, reject.
4. If no w is accepted, accept.”

▶ Proof Flaw?: What is the flaw in this machine?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 29

Decidability Decidable Examples

EDFA

▶ Language: EDFA = {⟨A⟩|A is a DFA and L(A) = ∅}

▶ Theorem 4.4: EDFA is a decidable language.

▶ Machine: Let Tbad = “On input ⟨A⟩, where A is a DFA:

1. For each string w ∈ Σ∗:
2. Run M on ⟨A,w⟩.
3. If M accepts, reject.
4. If no w is accepted, accept.”

▶ Proof Flaw?: What is the flaw in this machine?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 29

Decidability Decidable Examples

EDFA

▶ Language: EDFA = {⟨A⟩|A is a DFA and L(A) = ∅}

▶ Theorem 4.4: EDFA is a decidable language.

▶ Machine: Let T = “On input ⟨A⟩, where A is a DFA:

1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any state

that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

▶ Proof Sketch: The number of states is finite. The loop will
terminate. T is a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 9 / 29

Decidability Decidable Examples

EDFA

▶ Language: EDFA = {⟨A⟩|A is a DFA and L(A) = ∅}

▶ Theorem 4.4: EDFA is a decidable language.

▶ Machine: Let T = “On input ⟨A⟩, where A is a DFA:

1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any state

that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

▶ Proof Sketch: The number of states is finite. The loop will
terminate. T is a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 9 / 29

Decidability Decidable Examples

EDFA

▶ Language: EDFA = {⟨A⟩|A is a DFA and L(A) = ∅}

▶ Theorem 4.4: EDFA is a decidable language.

▶ Machine: Let T = “On input ⟨A⟩, where A is a DFA:

1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any state

that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

▶ Proof Sketch: The number of states is finite. The loop will
terminate. T is a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 9 / 29

Decidability Decidable Examples

EQDFA

▶ Language:
EQDFA = {⟨A,B⟩|A and B are DFAs and L(A) = L(B)}

▶ Theorem 4.5: EQDFA is a decidable language.

▶ Machine: Let Fbad = “On input ⟨A,B⟩, where A and B are DFAs:

1. For each w ∈ Σ∗:
2. Run M from Theorem 4.1 on ⟨A,w⟩ and ⟨B ,w⟩.
3. If the results of the two runs differ, reject.
4. If all results match, accept”

▶ Proof Flaw?: What is the flaw with this machine?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 10 / 29

Decidability Decidable Examples

EQDFA

▶ Language:
EQDFA = {⟨A,B⟩|A and B are DFAs and L(A) = L(B)}

▶ Theorem 4.5: EQDFA is a decidable language.

▶ Machine: Let Fbad = “On input ⟨A,B⟩, where A and B are DFAs:

1. For each w ∈ Σ∗:
2. Run M from Theorem 4.1 on ⟨A,w⟩ and ⟨B ,w⟩.
3. If the results of the two runs differ, reject.
4. If all results match, accept”

▶ Proof Flaw?: What is the flaw with this machine?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 10 / 29

Decidability Decidable Examples

EQDFA

▶ Language:
EQDFA = {⟨A,B⟩|A and B are DFAs and L(A) = L(B)}

▶ Theorem 4.5: EQDFA is a decidable language.

▶ Machine: Let F = “On input ⟨A,B⟩, where A and B are DFAs:

1. Construct DFA C to recognize
L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)).

2. Run T from Theorem 4.4 on ⟨C ⟩.
3. If T accepts, accept; otherwise, reject.”

▶ Proof Sketch: The algorithms used to construct C are from
chapter 1, and all are finite. This relies on the closure of regular
languages under complement, intersection and union. Draw a
sketch to illustrate the resulting set.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 11 / 29

Decidability Decidable Examples

EQDFA

▶ Language:
EQDFA = {⟨A,B⟩|A and B are DFAs and L(A) = L(B)}

▶ Theorem 4.5: EQDFA is a decidable language.

▶ Machine: Let F = “On input ⟨A,B⟩, where A and B are DFAs:

1. Construct DFA C to recognize
L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)).

2. Run T from Theorem 4.4 on ⟨C ⟩.
3. If T accepts, accept; otherwise, reject.”

▶ Proof Sketch: The algorithms used to construct C are from
chapter 1, and all are finite. This relies on the closure of regular
languages under complement, intersection and union. Draw a
sketch to illustrate the resulting set.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 11 / 29

Decidability Decidable Examples

EQDFA

▶ Language:
EQDFA = {⟨A,B⟩|A and B are DFAs and L(A) = L(B)}

▶ Theorem 4.5: EQDFA is a decidable language.

▶ Machine: Let F = “On input ⟨A,B⟩, where A and B are DFAs:

1. Construct DFA C to recognize
L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)).

2. Run T from Theorem 4.4 on ⟨C ⟩.
3. If T accepts, accept; otherwise, reject.”

▶ Proof Sketch: The algorithms used to construct C are from
chapter 1, and all are finite. This relies on the closure of regular
languages under complement, intersection and union. Draw a
sketch to illustrate the resulting set.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 11 / 29

Decidability Decidable Examples

ACFG

▶ Language: ACFG = {⟨G ,w⟩|G is a CFG that generates string w}

▶ Theorem 4.7: ACFG is a decidable language.

▶ Machine: Let Sbad = “On input ⟨G ,w⟩, where G is a CFG and w is
a string:

1. Generate all derivations of G .
2. If any of these derivations match w , accept; otherwise, reject.”

▶ Proof Flaw?: What is the flaw in this machine?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 29

Decidability Decidable Examples

ACFG

▶ Language: ACFG = {⟨G ,w⟩|G is a CFG that generates string w}

▶ Theorem 4.7: ACFG is a decidable language.

▶ Machine: Let Sbad = “On input ⟨G ,w⟩, where G is a CFG and w is
a string:

1. Generate all derivations of G .
2. If any of these derivations match w , accept; otherwise, reject.”

▶ Proof Flaw?: What is the flaw in this machine?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 29

Decidability Decidable Examples

ACFG

▶ Language: ACFG = {⟨G ,w⟩|G is a CFG that generates string w}

▶ Theorem 4.7: ACFG is a decidable language.

▶ Machine: Let S = “On input ⟨G ,w⟩, where G is a CFG and w is a
string:

1. Convert G to an equivalent grammar in Chomsky normal form.
2. Generate all derivations with 2n − 1 steps, where n = |w |. If n = 0,

generate length 1 derivations.
3. If any of these derivations match w , accept; otherwise, reject.”

▶ Proof Sketch: The Chomsky normal form conversion is finite. The
2n − 1 proof is in chapter 2 problems. This makes the number of
strings generated finite.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 13 / 29

Decidability Decidable Examples

ACFG

▶ Language: ACFG = {⟨G ,w⟩|G is a CFG that generates string w}

▶ Theorem 4.7: ACFG is a decidable language.

▶ Machine: Let S = “On input ⟨G ,w⟩, where G is a CFG and w is a
string:

1. Convert G to an equivalent grammar in Chomsky normal form.
2. Generate all derivations with 2n − 1 steps, where n = |w |. If n = 0,

generate length 1 derivations.
3. If any of these derivations match w , accept; otherwise, reject.”

▶ Proof Sketch: The Chomsky normal form conversion is finite. The
2n − 1 proof is in chapter 2 problems. This makes the number of
strings generated finite.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 13 / 29

Decidability Decidable Examples

ACFG

▶ Language: ACFG = {⟨G ,w⟩|G is a CFG that generates string w}

▶ Theorem 4.7: ACFG is a decidable language.

▶ Machine: Let S = “On input ⟨G ,w⟩, where G is a CFG and w is a
string:

1. Convert G to an equivalent grammar in Chomsky normal form.
2. Generate all derivations with 2n − 1 steps, where n = |w |. If n = 0,

generate length 1 derivations.
3. If any of these derivations match w , accept; otherwise, reject.”

▶ Proof Sketch: The Chomsky normal form conversion is finite. The
2n − 1 proof is in chapter 2 problems. This makes the number of
strings generated finite.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 13 / 29

Decidability Decidable Examples

ECFG

▶ Language: ECFG = {⟨G⟩|G is a CFG and L(G) = ∅}

▶ Theorem 4.8: ECFG is a decidable language.

▶ Machine: Let R = “On input ⟨G⟩, where G is a CFG:

1. Mark all terminal symbols in G .
2. Repeat until no new variables get marked.
3. Mark any variable A where G has a rule A → U1U2 · · ·Uk and

each symbol U1, ...,Uk is marked.
4. If the start variable is not marked, accept; otherwise, reject.”

▶ Proof Sketch: The number of symbols is finite. The loop will
terminate in a finite amount of time. R is a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 14 / 29

Decidability Decidable Examples

ECFG

▶ Language: ECFG = {⟨G⟩|G is a CFG and L(G) = ∅}

▶ Theorem 4.8: ECFG is a decidable language.

▶ Machine: Let R = “On input ⟨G⟩, where G is a CFG:

1. Mark all terminal symbols in G .
2. Repeat until no new variables get marked.
3. Mark any variable A where G has a rule A → U1U2 · · ·Uk and

each symbol U1, ...,Uk is marked.
4. If the start variable is not marked, accept; otherwise, reject.”

▶ Proof Sketch: The number of symbols is finite. The loop will
terminate in a finite amount of time. R is a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 14 / 29

Decidability Decidable Examples

ECFG

▶ Language: ECFG = {⟨G⟩|G is a CFG and L(G) = ∅}

▶ Theorem 4.8: ECFG is a decidable language.

▶ Machine: Let R = “On input ⟨G⟩, where G is a CFG:

1. Mark all terminal symbols in G .
2. Repeat until no new variables get marked.
3. Mark any variable A where G has a rule A → U1U2 · · ·Uk and

each symbol U1, ...,Uk is marked.
4. If the start variable is not marked, accept; otherwise, reject.”

▶ Proof Sketch: The number of symbols is finite. The loop will
terminate in a finite amount of time. R is a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 14 / 29

Decidability Decidable Examples

EQCFG

▶ Language:
EQCFG = {⟨G ,H ⟩|G and H are CFGs and L(G) = L(H)}

▶ Discussion:

Why not use the strategy from EQDFA,
L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))?

▶ The class of context-free languages is not closed under
complementation nor under intersection.

▶ EQCFG is not decidable. Proof to come later.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 15 / 29

Decidability Decidable Examples

EQCFG

▶ Language:
EQCFG = {⟨G ,H ⟩|G and H are CFGs and L(G) = L(H)}

▶ Discussion: Why not use the strategy from EQDFA,
L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))?

▶ The class of context-free languages is not closed under
complementation nor under intersection.

▶ EQCFG is not decidable. Proof to come later.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 15 / 29

Decidability Decidable Examples

EQCFG

▶ Language:
EQCFG = {⟨G ,H ⟩|G and H are CFGs and L(G) = L(H)}

▶ Discussion: Why not use the strategy from EQDFA,
L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))?

▶ The class of context-free languages is not closed under
complementation nor under intersection.

▶ EQCFG is not decidable. Proof to come later.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 15 / 29

Decidability Decidable Examples

EQCFG

▶ Language:
EQCFG = {⟨G ,H ⟩|G and H are CFGs and L(G) = L(H)}

▶ Discussion: Why not use the strategy from EQDFA,
L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))?

▶ The class of context-free languages is not closed under
complementation nor under intersection.

▶ EQCFG is not decidable. Proof to come later.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 15 / 29

Decidability Decidable Examples

Context-free languages are decidable

▶ Theorem 4.9: Every context-free language is decidable.

▶ Machine: Let MGbad = “On input ⟨G⟩ and string w :

1. Convert G into PDA B .
2. Simulate B on input w .
3. If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state, reject.”

▶ Proof Flaw?: What is the flaw in this machine?

▶ Hint: Deciders must halt.

▶ Hint: Why can we not guarantee that the simulation of B will halt?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 16 / 29

Decidability Decidable Examples

Context-free languages are decidable

▶ Theorem 4.9: Every context-free language is decidable.

▶ Machine: Let MGbad = “On input ⟨G⟩ and string w :

1. Convert G into PDA B .
2. Simulate B on input w .
3. If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state, reject.”

▶ Proof Flaw?: What is the flaw in this machine?

▶ Hint: Deciders must halt.

▶ Hint: Why can we not guarantee that the simulation of B will halt?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 16 / 29

Decidability Decidable Examples

Context-free languages are decidable

▶ Theorem 4.9: Every context-free language is decidable.

▶ Machine: Let MGbad = “On input ⟨G⟩ and string w :

1. Convert G into PDA B .
2. Simulate B on input w .
3. If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state, reject.”

▶ Proof Flaw?: What is the flaw in this machine?

▶ Hint: Deciders must halt.

▶ Hint: Why can we not guarantee that the simulation of B will halt?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 16 / 29

Decidability Decidable Examples

Context-free languages are decidable

▶ Theorem 4.9: Every context-free language is decidable.

▶ Machine: Let MGbad = “On input ⟨G⟩ and string w :

1. Convert G into PDA B .
2. Simulate B on input w .
3. If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state, reject.”

▶ Proof Flaw?: What is the flaw in this machine?

▶ Hint: Deciders must halt.

▶ Hint: Why can we not guarantee that the simulation of B will halt?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 16 / 29

Decidability Decidable Examples

Context-free languages are decidable

▶ Theorem 4.9: Every context-free language is decidable.

▶ Machine: Let MGbad = “On input ⟨G⟩ and string w :

1. Convert G into PDA B .
2. Simulate B on input w .
3. If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state, reject.”

▶ Proof Flaw?: What is the flaw in this machine?

▶ Hint: Deciders must halt.

▶ Hint: Why can we not guarantee that the simulation of B will halt?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 16 / 29

Decidability Decidable Examples

Context-free languages are decidable

▶ Theorem 4.9: Every context-free language is decidable.

▶ Machine: Let MG = “On input string w :

1. Run S from Theorem 4.7 on input ⟨G ,w⟩.
2. If S accepts, accept; otherwise, reject.”

▶ Proof Sketch: The only work is to encode the finite grammar G .
MG is a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 17 / 29

Decidability Decidable Examples

Context-free languages are decidable

▶ Theorem 4.9: Every context-free language is decidable.

▶ Machine: Let MG = “On input string w :

1. Run S from Theorem 4.7 on input ⟨G ,w⟩.
2. If S accepts, accept; otherwise, reject.”

▶ Proof Sketch: The only work is to encode the finite grammar G .
MG is a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 17 / 29

Decidability Decidable Examples

Context-free languages are decidable

▶ Theorem 4.9: Every context-free language is decidable.

▶ Machine: Let MG = “On input string w :

1. Run S from Theorem 4.7 on input ⟨G ,w⟩.
2. If S accepts, accept; otherwise, reject.”

▶ Proof Sketch: The only work is to encode the finite grammar G .
MG is a decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 17 / 29

Undecidability

Undecidable Languages

Reading: Sipser §4.2.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18 / 29

Undecidability The Halting Problem

ATM is recognizable

▶ Language:
ATM = {⟨M ,w⟩|M is a Turing Machine and M accepts w}

▶ Theorem: ATM is recognizable.

▶ Machine: Let U = “On input ⟨M ,w⟩, where M is a TM and w is a
string:

1. Simulate M on input w .
2. If M enters its accept state, accept; if M enters its reject state,

reject.”

▶ Proof Sketch: What are the possible outcomes? If M accepts w ,
U will accept. If M does not accept w , M will either reject or loop,
and U will either reject or loop. These are the conditions for a
recognizer TM. U recognizes ATM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 29

Undecidability The Halting Problem

ATM is recognizable

▶ Language:
ATM = {⟨M ,w⟩|M is a Turing Machine and M accepts w}

▶ Theorem: ATM is recognizable.

▶ Machine: Let U = “On input ⟨M ,w⟩, where M is a TM and w is a
string:

1. Simulate M on input w .
2. If M enters its accept state, accept; if M enters its reject state,

reject.”

▶ Proof Sketch: What are the possible outcomes? If M accepts w ,
U will accept. If M does not accept w , M will either reject or loop,
and U will either reject or loop. These are the conditions for a
recognizer TM. U recognizes ATM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 29

Undecidability The Halting Problem

ATM is recognizable

▶ Language:
ATM = {⟨M ,w⟩|M is a Turing Machine and M accepts w}

▶ Theorem: ATM is recognizable.

▶ Machine: Let U = “On input ⟨M ,w⟩, where M is a TM and w is a
string:

1. Simulate M on input w .
2. If M enters its accept state, accept; if M enters its reject state,

reject.”

▶ Proof Sketch: What are the possible outcomes? If M accepts w ,
U will accept. If M does not accept w , M will either reject or loop,
and U will either reject or loop. These are the conditions for a
recognizer TM. U recognizes ATM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 29

Undecidability The Halting Problem

ATM is recognizable

▶ Language:
ATM = {⟨M ,w⟩|M is a Turing Machine and M accepts w}

▶ Theorem: ATM is recognizable.

▶ Machine: Let U = “On input ⟨M ,w⟩, where M is a TM and w is a
string:

1. Simulate M on input w .
2. If M enters its accept state, accept; if M enters its reject state,

reject.”

▶ Proof Sketch: What are the possible outcomes?

If M accepts w ,
U will accept. If M does not accept w , M will either reject or loop,
and U will either reject or loop. These are the conditions for a
recognizer TM. U recognizes ATM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 29

Undecidability The Halting Problem

ATM is recognizable

▶ Language:
ATM = {⟨M ,w⟩|M is a Turing Machine and M accepts w}

▶ Theorem: ATM is recognizable.

▶ Machine: Let U = “On input ⟨M ,w⟩, where M is a TM and w is a
string:

1. Simulate M on input w .
2. If M enters its accept state, accept; if M enters its reject state,

reject.”

▶ Proof Sketch: What are the possible outcomes? If M accepts w ,
U will accept. If M does not accept w , M will either reject or loop,
and U will either reject or loop. These are the conditions for a
recognizer TM. U recognizes ATM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Language:
ATM = {⟨M ,w⟩|M is a Turing Machine and M accepts w}

▶ Theorem 4.11: ATM is undecidable.

▶ How can we prove undecidability? Any ideas from the way we
prove not context-free, or not regular?
Assume it is decidable, then show that assumption leads to a
contradiction.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Language:
ATM = {⟨M ,w⟩|M is a Turing Machine and M accepts w}

▶ Theorem 4.11: ATM is undecidable.

▶ How can we prove undecidability? Any ideas from the way we
prove not context-free, or not regular?
Assume it is decidable, then show that assumption leads to a
contradiction.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Language:
ATM = {⟨M ,w⟩|M is a Turing Machine and M accepts w}

▶ Theorem 4.11: ATM is undecidable.

▶ How can we prove undecidability? Any ideas from the way we
prove not context-free, or not regular?

Assume it is decidable, then show that assumption leads to a
contradiction.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Language:
ATM = {⟨M ,w⟩|M is a Turing Machine and M accepts w}

▶ Theorem 4.11: ATM is undecidable.

▶ How can we prove undecidability? Any ideas from the way we
prove not context-free, or not regular?
Assume it is decidable, then show that assumption leads to a
contradiction.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Assume ATM is decidable → Let H be a decider for ATM.

H =

{
accept if M accepts w
reject if M does not accept w

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept if M does not accept ⟨M ⟩
reject if M accepts ⟨M ⟩

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Assume ATM is decidable → Let H be a decider for ATM.

H =

{
accept if M accepts w
reject if M does not accept w

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept if M does not accept ⟨M ⟩
reject if M accepts ⟨M ⟩

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Assume ATM is decidable → Let H be a decider for ATM.

H =

{
accept if M accepts w
reject if M does not accept w

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept

if M does not accept ⟨M ⟩
reject if M accepts ⟨M ⟩

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Assume ATM is decidable → Let H be a decider for ATM.

H =

{
accept if M accepts w
reject if M does not accept w

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept if M does not accept ⟨M ⟩

reject if M accepts ⟨M ⟩

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Assume ATM is decidable → Let H be a decider for ATM.

H =

{
accept if M accepts w
reject if M does not accept w

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept if M does not accept ⟨M ⟩
reject

if M accepts ⟨M ⟩

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Assume ATM is decidable → Let H be a decider for ATM.

H =

{
accept if M accepts w
reject if M does not accept w

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept if M does not accept ⟨M ⟩
reject if M accepts ⟨M ⟩

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept if M does not accept ⟨M ⟩
reject if M accepts ⟨M ⟩

▶ What is the result of D(⟨D⟩)?

D(⟨D⟩) =
{

accept if D does not accept ⟨D⟩
reject if D accepts ⟨D⟩

▶ This contradiction proves our assumption of “ATM is decidable and
H exists as a decider for ATM” is false. ATM is not decidable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept if M does not accept ⟨M ⟩
reject if M accepts ⟨M ⟩

▶ What is the result of D(⟨D⟩)?

D(⟨D⟩) =
{

accept if D does not accept ⟨D⟩
reject if D accepts ⟨D⟩

▶ This contradiction proves our assumption of “ATM is decidable and
H exists as a decider for ATM” is false. ATM is not decidable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept if M does not accept ⟨M ⟩
reject if M accepts ⟨M ⟩

▶ What is the result of D(⟨D⟩)?

D(⟨D⟩) =
{

accept

if D does not accept ⟨D⟩
reject if D accepts ⟨D⟩

▶ This contradiction proves our assumption of “ATM is decidable and
H exists as a decider for ATM” is false. ATM is not decidable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept if M does not accept ⟨M ⟩
reject if M accepts ⟨M ⟩

▶ What is the result of D(⟨D⟩)?

D(⟨D⟩) =
{

accept if D does not accept ⟨D⟩

reject if D accepts ⟨D⟩

▶ This contradiction proves our assumption of “ATM is decidable and
H exists as a decider for ATM” is false. ATM is not decidable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept if M does not accept ⟨M ⟩
reject if M accepts ⟨M ⟩

▶ What is the result of D(⟨D⟩)?

D(⟨D⟩) =
{

accept if D does not accept ⟨D⟩
reject

if D accepts ⟨D⟩

▶ This contradiction proves our assumption of “ATM is decidable and
H exists as a decider for ATM” is false. ATM is not decidable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept if M does not accept ⟨M ⟩
reject if M accepts ⟨M ⟩

▶ What is the result of D(⟨D⟩)?

D(⟨D⟩) =
{

accept if D does not accept ⟨D⟩
reject if D accepts ⟨D⟩

▶ This contradiction proves our assumption of “ATM is decidable and
H exists as a decider for ATM” is false. ATM is not decidable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 29

Undecidability The Halting Problem

ATM is undecidable

▶ Machine: Let D = “On input ⟨M ⟩, where M is a TM:

1. Run H on input ⟨M , ⟨M ⟩⟩.
2. If H rejects, accept; if H accepts, reject.”

D(⟨M ⟩) =
{

accept if M does not accept ⟨M ⟩
reject if M accepts ⟨M ⟩

▶ What is the result of D(⟨D⟩)?

D(⟨D⟩) =
{

accept if D does not accept ⟨D⟩
reject if D accepts ⟨D⟩

▶ This contradiction proves our assumption of “ATM is decidable and
H exists as a decider for ATM” is false. ATM is not decidable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 29

Undecidability Unrecognizable Languages

Correspondence

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 29

Undecidability Unrecognizable Languages

Special varieties of functions
S

T

1-1:
s1 ̸= s2 ⇒
f (s1) ̸= f (s2)

S

T

Onto:
For every t ∈ T
there is an s ∈ S
such that f (s) = t

S

T

Bijection:
1-1 and onto
“1-1 Correspondence”

Formal definition of cardinality: S has (finite) cardinality n ∈ N
iff there is a bijection f : {1, . . . ,n} → S .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 24 / 29

Undecidability Unrecognizable Languages

Size of a set

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 25 / 29

Undecidability Unrecognizable Languages

co-Turing-recognizable

▶ Definition: Language A is co-Turing-recognizable if it is the
complement of a Turing-recognizable language.

▶ Alt. Definition: Language A is co-Turing-recognizable if A is
Turing-recognizable.

▶ Alt. Definition: Language A is co-Turing-recognizable if A is
Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 29

Undecidability Unrecognizable Languages

co-Turing-recognizable

▶ Definition: Language A is co-Turing-recognizable if it is the
complement of a Turing-recognizable language.

▶ Alt. Definition: Language A is co-Turing-recognizable if A is
Turing-recognizable.

▶ Alt. Definition: Language A is co-Turing-recognizable if A is
Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 29

Undecidability Unrecognizable Languages

co-Turing-recognizable

▶ Definition: Language A is co-Turing-recognizable if it is the
complement of a Turing-recognizable language.

▶ Alt. Definition: Language A is co-Turing-recognizable if A is
Turing-recognizable.

▶ Alt. Definition: Language A is co-Turing-recognizable if A is
Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 29

Undecidability Unrecognizable Languages

Decidable, Turing-recognizable, and
co-Turing-recognizable
▶ Theorem 4.22: A language is decidable if and only if it is

Turing-recognizable and co-Turing-recognizable.

▶ Proof:
▶ Part 1: If language A is decidable, then it is Turing-recognizable

and co-Turing-recognizable. All decidable languages are
Turing-recognizable, due to the accept requirement. The
complement of a decidable language is also decidable, by
swapping accept and reject results.

▶ Part 2: If language A is Turing-recognizable and
co-Turing-recognizable, then it is decidable. If A is
Turing-recognizable by M1, and A is Turing-recognizable by M2,
then we can make a decider for A.
Machine: Let M = “On input w :

1. Run both M1 and M2 on input w in parallel.
2. If M1 accepts, accept; if M2 accepts, reject.”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 29

Undecidability Unrecognizable Languages

Decidable, Turing-recognizable, and
co-Turing-recognizable
▶ Theorem 4.22: A language is decidable if and only if it is

Turing-recognizable and co-Turing-recognizable.

▶ Proof:

▶ Part 1: If language A is decidable, then it is Turing-recognizable
and co-Turing-recognizable. All decidable languages are
Turing-recognizable, due to the accept requirement. The
complement of a decidable language is also decidable, by
swapping accept and reject results.

▶ Part 2: If language A is Turing-recognizable and
co-Turing-recognizable, then it is decidable. If A is
Turing-recognizable by M1, and A is Turing-recognizable by M2,
then we can make a decider for A.
Machine: Let M = “On input w :

1. Run both M1 and M2 on input w in parallel.
2. If M1 accepts, accept; if M2 accepts, reject.”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 29

Undecidability Unrecognizable Languages

Decidable, Turing-recognizable, and
co-Turing-recognizable
▶ Theorem 4.22: A language is decidable if and only if it is

Turing-recognizable and co-Turing-recognizable.

▶ Proof:
▶ Part 1: If language A is decidable, then it is Turing-recognizable

and co-Turing-recognizable.

All decidable languages are
Turing-recognizable, due to the accept requirement. The
complement of a decidable language is also decidable, by
swapping accept and reject results.

▶ Part 2: If language A is Turing-recognizable and
co-Turing-recognizable, then it is decidable. If A is
Turing-recognizable by M1, and A is Turing-recognizable by M2,
then we can make a decider for A.
Machine: Let M = “On input w :

1. Run both M1 and M2 on input w in parallel.
2. If M1 accepts, accept; if M2 accepts, reject.”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 29

Undecidability Unrecognizable Languages

Decidable, Turing-recognizable, and
co-Turing-recognizable
▶ Theorem 4.22: A language is decidable if and only if it is

Turing-recognizable and co-Turing-recognizable.

▶ Proof:
▶ Part 1: If language A is decidable, then it is Turing-recognizable

and co-Turing-recognizable. All decidable languages are
Turing-recognizable, due to the accept requirement.

The
complement of a decidable language is also decidable, by
swapping accept and reject results.

▶ Part 2: If language A is Turing-recognizable and
co-Turing-recognizable, then it is decidable. If A is
Turing-recognizable by M1, and A is Turing-recognizable by M2,
then we can make a decider for A.
Machine: Let M = “On input w :

1. Run both M1 and M2 on input w in parallel.
2. If M1 accepts, accept; if M2 accepts, reject.”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 29

Undecidability Unrecognizable Languages

Decidable, Turing-recognizable, and
co-Turing-recognizable
▶ Theorem 4.22: A language is decidable if and only if it is

Turing-recognizable and co-Turing-recognizable.

▶ Proof:
▶ Part 1: If language A is decidable, then it is Turing-recognizable

and co-Turing-recognizable. All decidable languages are
Turing-recognizable, due to the accept requirement. The
complement of a decidable language is also decidable, by
swapping accept and reject results.

▶ Part 2: If language A is Turing-recognizable and
co-Turing-recognizable, then it is decidable. If A is
Turing-recognizable by M1, and A is Turing-recognizable by M2,
then we can make a decider for A.
Machine: Let M = “On input w :

1. Run both M1 and M2 on input w in parallel.
2. If M1 accepts, accept; if M2 accepts, reject.”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 29

Undecidability Unrecognizable Languages

Decidable, Turing-recognizable, and
co-Turing-recognizable
▶ Theorem 4.22: A language is decidable if and only if it is

Turing-recognizable and co-Turing-recognizable.

▶ Proof:
▶ Part 1: If language A is decidable, then it is Turing-recognizable

and co-Turing-recognizable. All decidable languages are
Turing-recognizable, due to the accept requirement. The
complement of a decidable language is also decidable, by
swapping accept and reject results.

▶ Part 2: If language A is Turing-recognizable and
co-Turing-recognizable, then it is decidable.

If A is
Turing-recognizable by M1, and A is Turing-recognizable by M2,
then we can make a decider for A.
Machine: Let M = “On input w :

1. Run both M1 and M2 on input w in parallel.
2. If M1 accepts, accept; if M2 accepts, reject.”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 29

Undecidability Unrecognizable Languages

Decidable, Turing-recognizable, and
co-Turing-recognizable
▶ Theorem 4.22: A language is decidable if and only if it is

Turing-recognizable and co-Turing-recognizable.

▶ Proof:
▶ Part 1: If language A is decidable, then it is Turing-recognizable

and co-Turing-recognizable. All decidable languages are
Turing-recognizable, due to the accept requirement. The
complement of a decidable language is also decidable, by
swapping accept and reject results.

▶ Part 2: If language A is Turing-recognizable and
co-Turing-recognizable, then it is decidable. If A is
Turing-recognizable by M1, and A is Turing-recognizable by M2,
then we can make a decider for A.

Machine: Let M = “On input w :
1. Run both M1 and M2 on input w in parallel.
2. If M1 accepts, accept; if M2 accepts, reject.”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 29

Undecidability Unrecognizable Languages

Decidable, Turing-recognizable, and
co-Turing-recognizable
▶ Theorem 4.22: A language is decidable if and only if it is

Turing-recognizable and co-Turing-recognizable.

▶ Proof:
▶ Part 1: If language A is decidable, then it is Turing-recognizable

and co-Turing-recognizable. All decidable languages are
Turing-recognizable, due to the accept requirement. The
complement of a decidable language is also decidable, by
swapping accept and reject results.

▶ Part 2: If language A is Turing-recognizable and
co-Turing-recognizable, then it is decidable. If A is
Turing-recognizable by M1, and A is Turing-recognizable by M2,
then we can make a decider for A.
Machine: Let M = “On input w :

1. Run both M1 and M2 on input w in parallel.
2. If M1 accepts, accept; if M2 accepts, reject.”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 29

Undecidability Unrecognizable Languages

Decidable, Turing-recognizable, and
co-Turing-recognizable
▶ Theorem 4.22: A language is decidable if and only if it is

Turing-recognizable and co-Turing-recognizable.

▶ Proof:
▶ Part 1: If language A is decidable, then it is Turing-recognizable

and co-Turing-recognizable. All decidable languages are
Turing-recognizable, due to the accept requirement. The
complement of a decidable language is also decidable, by
swapping accept and reject results.

▶ Part 2: If language A is Turing-recognizable and
co-Turing-recognizable, then it is decidable. If A is
Turing-recognizable by M1, and A is Turing-recognizable by M2,
then we can make a decider for A.
Machine: Let M = “On input w :

1. Run both M1 and M2 on input w in parallel.
2. If M1 accepts, accept; if M2 accepts, reject.”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 29

Undecidability Unrecognizable Languages

An unrecognizable language

▶ Theorem 4.23: ATM is not Turing-recognizable.

▶ Proof: ATM is Turing-recognizable (by unnamed Theorem). By
Theorem 4.22, if ATM were Turing-recognizable, then ATM would
be decidable. ATM is undecidable (by Theorem 4.11).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 29

Undecidability Unrecognizable Languages

An unrecognizable language

▶ Theorem 4.23: ATM is not Turing-recognizable.

▶ Proof:

ATM is Turing-recognizable (by unnamed Theorem). By
Theorem 4.22, if ATM were Turing-recognizable, then ATM would
be decidable. ATM is undecidable (by Theorem 4.11).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 29

Undecidability Unrecognizable Languages

An unrecognizable language

▶ Theorem 4.23: ATM is not Turing-recognizable.

▶ Proof: ATM is Turing-recognizable (by unnamed Theorem). By
Theorem 4.22, if ATM were Turing-recognizable, then ATM would
be decidable. ATM is undecidable (by Theorem 4.11).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 29

Undecidability Unrecognizable Languages

Language Nesting

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 29 / 29

	Decidability
	Status Update
	Decidable Examples

	Undecidability
	The Halting Problem
	Unrecognizable Languages

