# Computational Theory Decidability

#### Curtis Larsen

Utah Tech University—Computing

Fall 2024

Adapted from notes by Russ Ross

## Decidable Languages

Reading: Sipser §4.1.

## Recognizable and Decidable

- $\blacktriangleright L(M) = \{w : M \text{ accepts } w\}.$
- ightharpoonup L is **Turing-recognizable** if L = L(M) for some TM M, i.e.

Decidability

- $w \in L \Rightarrow M$  halts on w in state  $q_{accent}$ .
- $\bullet \quad w \notin L \Rightarrow M$  halts on w in state  $q_{\text{reject}}$  OR M never halts (it "loops").
- ightharpoonup L is **decidable** if L = L(M) for some TM M, i.e.
  - $w \in L \Rightarrow M$  halts on w in state  $q_{accent}$ .
  - $\bullet$   $w \notin L \Rightarrow M$  halts on w in state  $q_{reject}$ .

## Problems as Turing Machine Languages

- ▶ Encoding arbitrary objects:  $\langle O \rangle$  is a suitable string representation of O.
- Problems can be encoded as languages:
  Let G be an undirected graph. We want to know if G is connected.
  We can state this as the language:

$$A = \{\langle G \rangle | G \text{ is a connected undirected graph } \}$$

➤ The Turing machine that processes input has a (usually) hidden step that decodes and verifies the encoding, rejecting if the verification fails.

- Language:
  - $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$
- ► **Theorem 4.1**: A<sub>DFA</sub> is a decidable language.

- Language:
  - $A_{\mathsf{DFA}} = \{\langle B, w \rangle | B \text{ is a DFA that accepts input string } w\}$
- ► Theorem 4.1: A<sub>DFA</sub> is a decidable language.
- ▶ **Machine**: Let M = "On input  $\langle B, w \rangle$ , where B is a DFA and w is a string:
  - 1. Simulate B on input w.
  - 2. If the simulation ends in an accept state, *accept*. If it ends in a nonaccepting state, *reject*."

- Language:
  - $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$
- ► Theorem 4.1: A<sub>DFA</sub> is a decidable language.
- ▶ **Machine**: Let M = "On input  $\langle B, w \rangle$ , where B is a DFA and w is a string:
  - 1. Simulate B on input w.
  - 2. If the simulation ends in an accept state, *accept*. If it ends in a nonaccepting state, *reject*."
- ▶ Proof Sketch: The input is finite. Every step of the simulation consumes one input symbol. The simulation will terminate. M only needs to track the current input position, and the current state. When finished, final state's classification is all that is needed.

#### $A_{\mathsf{NFA}}$

- ► Language:
  - $A_{\mathsf{NFA}} = \{\langle B, w \rangle | B \text{ is an NFA that accepts input string } w\}$
- ► **Theorem 4.2**: A<sub>NFA</sub> is a decidable language.

#### $A_{\mathsf{NFA}}$

- ► Language:
  - $A_{\mathsf{NFA}} = \{\langle B, w \rangle | B \text{ is an NFA that accepts input string } w\}$
- ► Theorem 4.2: A<sub>NFA</sub> is a decidable language.
- ▶ **Machine**: Let N = "On input  $\langle B, w \rangle$ , where B is an NFA and w is a string:
  - 1. Convert B to an equivalent DFA C, using the procedure from Theorem 1.39.
  - **2.** Run M from Theorem 4.1 on input  $\langle C, w \rangle$ .
  - 3. If M accepts, accept; otherwise, reject."

#### $A_{\mathsf{NFA}}$

- Language:
  - $A_{\mathsf{NFA}} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts input string } w \}$

Decidability

- ► **Theorem 4.2**: A<sub>NFA</sub> is a decidable language.
- **Machine**: Let N = "On input  $\langle B, w \rangle$ , where B is an NFA and w is a string:
  - 1. Convert B to an equivalent DFA C, using the procedure from Theorem 1 39
  - 2. Run M from Theorem 4.1 on input  $\langle C, w \rangle$ .
  - 3. If M accepts, accept; otherwise, reject."
- Proof Sketch: The procedure from Theorem 1.39 is finite. M is a decider. N must also be a decider.

#### $A_{\mathsf{REX}}$

- ► Language:
  - $A_{\mathsf{REX}} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w\}$
- ► **Theorem 4.3**: A<sub>REX</sub> is a decidable language.

#### $A_{\mathsf{REX}}$

- ► Language:
  - $A_{\mathsf{REX}} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w \}$
- ► Theorem 4.3: A<sub>REX</sub> is a decidable language.
- ▶ **Machine**: Let P = "On input  $\langle R, w \rangle$ , where R is a regular expression and w is a string:
  - 1. Convert R to an equivalent NFA B, using the procedure from Theorem 1.54.
  - **2**. Run *N* from Theorem 4.2 on input  $\langle B, w \rangle$ .
  - 3. If N accepts, accept, otherwise, reject."

#### $A_{\mathsf{REX}}$

- ► Language:
  - $A_{\mathsf{REX}} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w \}$
- Theorem 4.3: A<sub>REX</sub> is a decidable language.
- ▶ **Machine**: Let P = "On input  $\langle R, w \rangle$ , where R is a regular expression and w is a string:
  - Convert R to an equivalent NFA B, using the procedure from Theorem 1 54
  - **2.** Run N from Theorem 4.2 on input  $\langle B, w \rangle$ .
  - 3. If N accepts, accept; otherwise, reject."
- ▶ **Proof Sketch**: The procedure from Theorem 1.54 is finite. *N* is a decider. *P* must also be a decider.

- ▶ Language:  $E_{DFA} = \{\langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset\}$
- ▶ **Theorem 4.4**: *E*<sub>DFA</sub> is a decidable language.
- ▶ **Machine**: Let  $T_{\text{bad}}$  = "On input  $\langle A \rangle$ , where A is a DFA:
  - 1. For each string  $w \in \Sigma^*$ :
  - 2. Run M on  $\langle A, w \rangle$ .
  - 3. If *M* accepts, *reject*.
  - 4. If no w is accepted, accept."

- ▶ Language:  $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- ▶ **Theorem 4.4**: *E*<sub>DFA</sub> is a decidable language.
- ▶ **Machine**: Let  $T_{\text{bad}}$  = "On input  $\langle A \rangle$ , where A is a DFA:
  - 1. For each string  $w \in \Sigma^*$ :
  - 2. Run M on  $\langle A, w \rangle$ .
  - 3. If *M* accepts, *reject*.
  - 4. If no w is accepted, accept."
- Proof Flaw?: What is the flaw in this machine?

- ▶ Language:  $E_{DFA} = \{\langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset\}$
- ▶ **Theorem 4.4**:  $E_{DFA}$  is a decidable language.

- ▶ Language:  $E_{DFA} = \{\langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset\}$
- ► Theorem 4.4: E<sub>DFA</sub> is a decidable language.
- ▶ **Machine**: Let T = "On input  $\langle A \rangle$ , where A is a DFA:
  - 1. Mark the start state of A.
  - 2. Repeat until no new states get marked:
  - 3. Mark any state that has a transition coming into it from any state that is already marked.
  - 4. If no accept state is marked, accept; otherwise, reject."

- ▶ Language:  $E_{DFA} = \{\langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset\}$
- ▶ **Theorem 4.4**: *E*<sub>DFA</sub> is a decidable language.
- ▶ **Machine**: Let T = "On input  $\langle A \rangle$ , where A is a DFA:
  - 1. Mark the start state of A.
  - 2. Repeat until no new states get marked:
  - 3. Mark any state that has a transition coming into it from any state that is already marked.
  - 4. If no accept state is marked, accept; otherwise, reject."
- ▶ **Proof Sketch**: The number of states is finite. The loop will terminate. *T* is a decider.

Language:

$$EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

- ► **Theorem 4.5**: *EQ*<sub>DFA</sub> is a decidable language.
- ▶ **Machine**: Let  $F_{\text{bad}} = \text{``On input } \langle A, B \rangle$ , where A and B are DFAs:
  - 1. For each  $w \in \Sigma^*$ :
  - 2. Run M from Theorem 4.1 on  $\langle A, w \rangle$  and  $\langle B, w \rangle$ .
  - 3. If the results of the two runs differ, *reject*.
  - 4. If all results match, accept"

Language:

$$EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

- ► **Theorem 4.5**: *EQ*<sub>DFA</sub> is a decidable language.
- ▶ **Machine**: Let  $F_{\text{bad}} = \text{``On input } \langle A, B \rangle$ , where A and B are DFAs:
  - 1. For each  $w \in \Sigma^*$ :
  - 2. Run M from Theorem 4.1 on  $\langle A, w \rangle$  and  $\langle B, w \rangle$ .
  - 3. If the results of the two runs differ, reject.
  - If all results match, accept"
- Proof Flaw?: What is the flaw with this machine?

Language:

$$EQ_{DFA} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

**Theorem 4.5**:  $EQ_{DFA}$  is a decidable language.

Language:

$$EQ_{\mathsf{DFA}} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

- ► Theorem 4.5: EQ<sub>DFA</sub> is a decidable language.
- ▶ **Machine**: Let F = "On input  $\langle A, B \rangle$ , where A and B are DFAs:
  - 1. Construct DFA C to recognize  $L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B)).$
  - **2**. Run T from Theorem 4.4 on  $\langle C \rangle$ .
  - 3. If T accepts, accept; otherwise, reject."

Language:

$$EQ_{\mathsf{DFA}} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

- ▶ **Theorem 4.5**: *EQ*<sub>DFA</sub> is a decidable language.
- ▶ **Machine**: Let F = "On input  $\langle A, B \rangle$ , where A and B are DFAs:
  - 1. Construct DFA C to recognize  $L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B)).$
  - 2. Run T from Theorem 4.4 on  $\langle C \rangle$ .
  - 3. If T accepts, accept; otherwise, reject."
- ▶ **Proof Sketch**: The algorithms used to construct *C* are from chapter 1, and all are finite. This relies on the closure of regular languages under complement, intersection and union. Draw a sketch to illustrate the resulting set.

- ▶ Language:  $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}$
- ► Theorem 4.7: A<sub>CFG</sub> is a decidable language.
- ▶ **Machine**: Let  $S_{\mathsf{bad}} = \text{``On input } \langle G, w \rangle, \text{ where } G \text{ is a CFG and } w \text{ is a string:}$ 
  - 1. Generate all derivations of G.
  - 2. If any of these derivations match w, accept; otherwise, reject."

- ▶ Language:  $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}$
- ► Theorem 4.7: A<sub>CFG</sub> is a decidable language.
- ▶ **Machine**: Let  $S_{\mathsf{bad}} = \text{``On input } \langle G, w \rangle, \text{ where } G \text{ is a CFG and } w \text{ is a string:}$ 
  - 1. Generate all derivations of G.
  - 2. If any of these derivations match w, accept; otherwise, reject."
- Proof Flaw?: What is the flaw in this machine?

- ▶ Language:  $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}$
- ▶ **Theorem 4.7**:  $A_{CFG}$  is a decidable language.

- ▶ Language:  $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}$
- ► Theorem 4.7: A<sub>CFG</sub> is a decidable language.
- ▶ Machine: Let S = "On input  $\langle G, w \rangle$ , where G is a CFG and w is a string:
  - 1. Convert G to an equivalent grammar in Chomsky normal form.
  - 2. Generate all derivations with 2n-1 steps, where n=|w|. If n=0, generate length 1 derivations.
  - 3. If any of these derivations match w, accept; otherwise, reject."

- ▶ Language:  $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}$
- ► **Theorem 4.7**: A<sub>CFG</sub> is a decidable language.
- ▶ **Machine**: Let S = "On input  $\langle G, w \rangle$ , where G is a CFG and w is a string:
  - 1. Convert G to an equivalent grammar in Chomsky normal form.
  - 2. Generate all derivations with 2n-1 steps, where n=|w|. If n=0, generate length 1 derivations.
  - 3. If any of these derivations match w, accept; otherwise, reject."
- ▶ **Proof Sketch**: The Chomsky normal form conversion is finite. The 2n-1 proof is in chapter 2 problems. This makes the number of strings generated finite.

- ▶ Language:  $E_{CFG} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset\}$
- ▶ **Theorem 4.8**:  $E_{CFG}$  is a decidable language.

- ▶ Language:  $E_{CFG} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset\}$
- ▶ **Theorem 4.8**:  $E_{CFG}$  is a decidable language.
- ▶ **Machine**: Let R = "On input  $\langle G \rangle$ , where G is a CFG:
  - 1. Mark all terminal symbols in G.
  - 2. Repeat until no new variables get marked.
  - 3. Mark any variable A where G has a rule  $A \to U_1 U_2 \cdots U_k$  and each symbol  $U_1, ..., U_k$  is marked.
  - 4. If the start variable is not marked, accept; otherwise, reject."

- ▶ Language:  $E_{CFG} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset\}$
- ▶ **Theorem 4.8**:  $E_{CFG}$  is a decidable language.
- ▶ **Machine**: Let R = "On input  $\langle G \rangle$ , where G is a CFG:
  - 1. Mark all terminal symbols in G.
  - 2. Repeat until no new variables get marked.
  - 3. Mark any variable A where G has a rule  $A \to U_1 U_2 \cdots U_k$  and each symbol  $U_1, ..., U_k$  is marked.
  - 4. If the start variable is not marked, accept; otherwise, reject."
- ▶ **Proof Sketch**: The number of symbols is finite. The loop will terminate in a finite amount of time. *R* is a decider.



► Language:

$$EQ_{\mathsf{CFG}} = \{\langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H)\}$$

Discussion:



- ► Language:
  - $EQ_{CFG} = \{\langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H)\}$
- ▶ **Discussion**: Why not use the strategy from  $EQ_{DFA}$ ,  $L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$ ?



► Language:

$$EQ_{\mathsf{CFG}} = \{\langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H)\}$$

- ▶ **Discussion**: Why not use the strategy from  $EQ_{DFA}$ ,  $L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$ ?
- The class of context-free languages is not closed under complementation nor under intersection.



► Language:

$$EQ_{\mathsf{CFG}} = \{\langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H)\}$$

- ▶ **Discussion**: Why not use the strategy from  $EQ_{DFA}$ ,  $L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$ ?
- The class of context-free languages is not closed under complementation nor under intersection.
- ► *EQ*<sub>CFG</sub> is not decidable. Proof to come later.

## Context-free languages are decidable

▶ **Theorem 4.9**: Every context-free language is decidable.

- ► **Theorem 4.9**: Every context-free language is decidable.
- ▶ **Machine**: Let  $M_{G_{\text{had}}} = \text{``On input } \langle G \rangle$  and string w:
  - 1. Convert G into PDA B.
  - 2. Simulate B on input w.
  - 3. If the simulation ends in an accept state, *accept*. If it ends in a nonaccepting state, *reject*."

- ► **Theorem 4.9**: Every context-free language is decidable.
- ▶ **Machine**: Let  $M_{G_{\text{bad}}} = \text{``On input } \langle G \rangle$  and string w:
  - 1. Convert G into PDA B.
  - 2. Simulate B on input w.
  - 3. If the simulation ends in an accept state, *accept*. If it ends in a nonaccepting state, *reject*."
- Proof Flaw?: What is the flaw in this machine?

- ► **Theorem 4.9**: Every context-free language is decidable.
- ▶ **Machine**: Let  $M_{G_{\text{had}}} = \text{``On input } \langle G \rangle$  and string w:
  - 1. Convert G into PDA B.
  - 2. Simulate B on input w.
  - 3. If the simulation ends in an accept state, *accept*. If it ends in a nonaccepting state, *reject*."
- Proof Flaw?: What is the flaw in this machine?
- Hint: Deciders must halt.

- ► **Theorem 4.9**: Every context-free language is decidable.
- ▶ **Machine**: Let  $M_{G_{\text{had}}} = \text{``On input } \langle G \rangle$  and string w:
  - 1. Convert G into PDA B.
  - 2. Simulate B on input w.
  - 3. If the simulation ends in an accept state, *accept*. If it ends in a nonaccepting state, *reject*."
- Proof Flaw?: What is the flaw in this machine?
- Hint: Deciders must halt.
- ▶ Hint: Why can we not guarantee that the simulation of *B* will halt?

▶ **Theorem 4.9**: Every context-free language is decidable.

- ► **Theorem 4.9**: Every context-free language is decidable.
- ▶ **Machine**: Let  $M_G$  = "On input string w:
  - 1. Run S from Theorem 4.7 on input  $\langle G, w \rangle$ .
  - 2. If S accepts, accept, otherwise, reject."

- ► **Theorem 4.9**: Every context-free language is decidable.
- ▶ **Machine**: Let  $M_G$  = "On input string w:
  - 1. Run S from Theorem 4.7 on input  $\langle G, w \rangle$ .
  - 2. If S accepts, accept; otherwise, reject."
- ▶ **Proof Sketch**: The only work is to encode the finite grammar G.  $M_G$  is a decider.

# **Undecidable Languages**

Reading: Sipser §4.2.

#### Language:

 $A_{\mathsf{TM}} = \{\langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w\}$ 

- Language:
  - $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w \}$
- **Theorem**:  $A_{\mathsf{TM}}$  is recognizable.

- Language:
  - $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w \}$
- **Theorem**:  $A_{\mathsf{TM}}$  is recognizable.
- ▶ **Machine**: Let U = "On input  $\langle M, w \rangle$ , where M is a TM and w is a string:
  - 1. Simulate M on input w.
  - If M enters its accept state, accept; if M enters its reject state, reject."

- Language:
  - $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w \}$
- **Theorem**:  $A_{\mathsf{TM}}$  is recognizable.
- ▶ **Machine**: Let U = "On input  $\langle M, w \rangle$ , where M is a TM and w is a string:
  - 1. Simulate M on input w.
  - 2. If *M* enters its accept state, *accept*; if *M* enters its reject state, *reject*."
- ▶ **Proof Sketch**: What are the possible outcomes?

- Language:
  - $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w \}$
- **Theorem**:  $A_{\mathsf{TM}}$  is recognizable.
- ▶ **Machine**: Let U = "On input  $\langle M, w \rangle$ , where M is a TM and w is a string:
  - 1. Simulate M on input w.
  - 2. If *M* enters its accept state, *accept*; if *M* enters its reject state, *reject*."
- ▶ **Proof Sketch**: What are the possible outcomes? If M accepts w, U will accept. If M does not accept w, M will either reject or loop, and U will either reject or loop. These are the conditions for a recognizer TM. U recognizes  $A_{\mathsf{TM}}$ .

#### ► Language:

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w \}$ 

- ► Language:
  - $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w \}$
- ▶ **Theorem 4.11**:  $A_{TM}$  is undecidable.

- Language:
  - $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w \}$
- **Theorem 4.11**:  $A_{TM}$  is undecidable.
- ► How can we prove undecidability? Any ideas from the way we prove not context-free, or not regular?

- ► Language:
  - $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w \}$
- ▶ **Theorem 4.11**:  $A_{TM}$  is undecidable.
- How can we prove undecidability? Any ideas from the way we prove not context-free, or not regular? Assume it is decidable, then show that assumption leads to a contradiction.

Assume A<sub>TM</sub> is decidable → Let H be a decider for A<sub>TM</sub>.

$$H = \left\{ \begin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array} \right.$$

▶ Assume  $A_{\mathsf{TM}}$  is decidable  $\to$  Let H be a decider for  $A_{\mathsf{TM}}$ .

$$H = \left\{ \begin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array} \right.$$

- ▶ **Machine**: Let D = "On input  $\langle M \rangle$ , where M is a TM:
  - 1. Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. If H rejects, accept, if H accepts, reject."

▶ Assume  $A_{\mathsf{TM}}$  is decidable  $\to$  Let H be a decider for  $A_{\mathsf{TM}}$ .

$$H = \left\{ \begin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array} \right.$$

- ▶ **Machine**: Let D = "On input  $\langle M \rangle$ , where M is a TM:
  - 1. Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. If H rejects, accept; if H accepts, reject."

$$D(\langle M \rangle) = \left\{ 
ight.$$
 accept

Assume A<sub>TM</sub> is decidable → Let H be a decider for A<sub>TM</sub>.

$$H = \left\{ \begin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array} \right.$$

- ▶ **Machine**: Let D = "On input  $\langle M \rangle$ , where M is a TM:
  - 1. Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. If H rejects, accept; if H accepts, reject."

$$D(\langle M \rangle) = \left\{ \begin{array}{c} \textit{accept} & \text{if } M \text{ does not accept } \langle M \rangle \end{array} \right.$$

Assume A<sub>TM</sub> is decidable → Let H be a decider for A<sub>TM</sub>.

$$H = \left\{ \begin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array} \right.$$

- ▶ **Machine**: Let D = "On input  $\langle M \rangle$ , where M is a TM:
  - 1. Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. If H rejects, accept; if H accepts, reject."

$$D(\langle M \rangle) = \left\{ \begin{array}{l} \textit{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \textit{reject} \end{array} \right.$$

▶ Assume  $A_{\mathsf{TM}}$  is decidable  $\to$  Let H be a decider for  $A_{\mathsf{TM}}$ .

$$H = \left\{ \begin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array} \right.$$

- ▶ **Machine**: Let D = "On input  $\langle M \rangle$ , where M is a TM:
  - 1. Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. If H rejects, accept, if H accepts, reject."

$$D(\langle M \rangle) = \left\{ \begin{array}{ll} \textit{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \textit{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{array} \right.$$

- ▶ **Machine**: Let D = "On input  $\langle M \rangle$ , where M is a TM:
  - 1. Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. If H rejects, accept; if H accepts, reject."

$$D(\langle M \rangle) = \left\{ \begin{array}{ll} \textit{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \textit{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{array} \right.$$

- ▶ **Machine**: Let D = "On input  $\langle M \rangle$ , where M is a TM:
  - 1. Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. If H rejects, accept; if H accepts, reject."

$$D(\langle M \rangle) = \left\{ \begin{array}{ll} \textit{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \textit{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{array} \right.$$

- ▶ **Machine**: Let D = "On input  $\langle M \rangle$ , where M is a TM:
  - 1. Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. If H rejects, accept; if H accepts, reject."

$$D(\langle M \rangle) = \left\{ \begin{array}{ll} \textit{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \textit{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{array} \right.$$

$$D(\langle D \rangle) = \left\{ 
ight.$$
 accept

- ▶ **Machine**: Let D = "On input  $\langle M \rangle$ , where M is a TM:
  - 1. Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. If H rejects, accept; if H accepts, reject."

$$D(\langle M \rangle) = \left\{ \begin{array}{ll} \textit{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \textit{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{array} \right.$$

$$D(\langle D \rangle) = \left\{ \begin{array}{c} \textit{accept} & \text{if } D \text{ does not accept } \langle D \rangle \end{array} \right.$$

- ▶ **Machine**: Let D = "On input  $\langle M \rangle$ , where M is a TM:
  - 1. Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. If H rejects, accept; if H accepts, reject."

$$D(\langle M \rangle) = \left\{ \begin{array}{ll} \textit{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \textit{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{array} \right.$$

$$D(\langle D \rangle) = \left\{ \begin{array}{ll} \textit{accept} & \text{if } D \text{ does not accept } \langle D \rangle \\ \textit{reject} \end{array} \right.$$

- ▶ **Machine**: Let D = "On input  $\langle M \rangle$ , where M is a TM:
  - 1. Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. If H rejects, accept; if H accepts, reject."

$$D(\langle M \rangle) = \left\{ \begin{array}{ll} \textit{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \textit{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{array} \right.$$

$$D(\langle D \rangle) = \left\{ \begin{array}{ll} \textit{accept} & \text{if } D \text{ does not accept } \langle D \rangle \\ \textit{reject} & \text{if } D \text{ accepts } \langle D \rangle \end{array} \right.$$

- ▶ **Machine**: Let D = "On input  $\langle M \rangle$ , where M is a TM:
  - 1. Run H on input  $\langle M, \langle M \rangle \rangle$ .
  - 2. If H rejects, accept; if H accepts, reject."

$$D(\langle M \rangle) = \left\{ \begin{array}{ll} \textit{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \textit{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{array} \right.$$

▶ What is the result of  $D(\langle D \rangle)$ ?

$$D(\langle D \rangle) = \left\{ \begin{array}{ll} \textit{accept} & \text{if } D \text{ does not accept } \langle D \rangle \\ \textit{reject} & \text{if } D \text{ accepts } \langle D \rangle \end{array} \right.$$

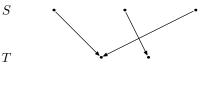
▶ This contradiction proves our assumption of " $A_{\mathsf{TM}}$  is decidable and H exists as a decider for  $A_{\mathsf{TM}}$ " is false.  $A_{\mathsf{TM}}$  is not decidable.

# Correspondence

# Special varieties of functions

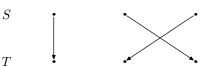


$$\frac{1-1:}{s_1 \neq s_2} \Rightarrow f(s_1) \neq f(s_2)$$



#### Onto:

For every  $t \in T$ there is an  $s \in S$ such that f(s) = t



# Bijection:

1-1 and onto "1-1 Correspondence"

Formal definition of **cardinality**: S has (finite) cardinality  $n \in \mathcal{N}$  iff there is a bijection  $f : \{1, \dots, n\} \to S$ .

#### Size of a set

#### co-Turing-recognizable

▶ **Definition**: Language *A* is co-Turing-recognizable if it is the complement of a Turing-recognizable language.

#### co-Turing-recognizable

- ▶ **Definition**: Language *A* is co-Turing-recognizable if it is the complement of a Turing-recognizable language.
- ▶ Alt. Definition: Language A is co-Turing-recognizable if  $\overline{A}$  is Turing-recognizable.

#### co-Turing-recognizable

- ▶ **Definition**: Language *A* is co-Turing-recognizable if it is the complement of a Turing-recognizable language.
- ▶ Alt. Definition: Language A is co-Turing-recognizable if  $\overline{A}$  is Turing-recognizable.
- ▶ Alt. Definition: Language  $\overline{A}$  is co-Turing-recognizable if A is Turing-recognizable.

► Theorem 4.22: A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable.

- ► Theorem 4.22: A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable.
- Proof:

- ► Theorem 4.22: A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable.
- Proof:
  - ▶ Part 1: If language *A* is decidable, then it is Turing-recognizable and co-Turing-recognizable.

- ► Theorem 4.22: A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable.
- Proof:
  - ▶ Part 1: If language A is decidable, then it is Turing-recognizable and co-Turing-recognizable. All decidable languages are Turing-recognizable, due to the accept requirement.

- ► Theorem 4.22: A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable.
- Proof:
  - ▶ Part 1: If language A is decidable, then it is Turing-recognizable and co-Turing-recognizable. All decidable languages are Turing-recognizable, due to the accept requirement. The complement of a decidable language is also decidable, by swapping accept and reject results.

- ► Theorem 4.22: A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable.
- Proof:
  - ▶ Part 1: If language A is decidable, then it is Turing-recognizable and co-Turing-recognizable. All decidable languages are Turing-recognizable, due to the accept requirement. The complement of a decidable language is also decidable, by swapping accept and reject results.
  - ▶ Part 2: If language *A* is Turing-recognizable and co-Turing-recognizable, then it is decidable.

- ► Theorem 4.22: A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable.
- Proof:
  - ▶ Part 1: If language A is decidable, then it is Turing-recognizable and co-Turing-recognizable. All decidable languages are Turing-recognizable, due to the accept requirement. The complement of a decidable language is also decidable, by swapping accept and reject results.
  - ▶ Part 2: If language A is Turing-recognizable and co-Turing-recognizable, then it is decidable. If A is Turing-recognizable by  $M_1$ , and  $\overline{A}$  is Turing-recognizable by  $M_2$ , then we can make a decider for A.

- ► Theorem 4.22: A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable.
- Proof:
  - ▶ Part 1: If language *A* is decidable, then it is Turing-recognizable and co-Turing-recognizable. All decidable languages are Turing-recognizable, due to the accept requirement. The complement of a decidable language is also decidable, by swapping accept and reject results.
  - ▶ Part 2: If language A is Turing-recognizable and co-Turing-recognizable, then it is decidable. If A is Turing-recognizable by  $M_1$ , and  $\overline{A}$  is Turing-recognizable by  $M_2$ , then we can make a decider for A.
    - **Machine**: Let M = "On input w:
      - 1. Run both  $M_1$  and  $M_2$  on input w in parallel.
      - 2. If  $M_1$  accepts, accept; if  $M_2$  accepts, reject."

- ► Theorem 4.22: A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable.
- Proof:
  - ▶ Part 1: If language *A* is decidable, then it is Turing-recognizable and co-Turing-recognizable. All decidable languages are Turing-recognizable, due to the accept requirement. The complement of a decidable language is also decidable, by swapping accept and reject results.
  - ▶ Part 2: If language A is Turing-recognizable and co-Turing-recognizable, then it is decidable. If A is Turing-recognizable by  $M_1$ , and  $\overline{A}$  is Turing-recognizable by  $M_2$ , then we can make a decider for A.
    - **Machine**: Let M = "On input w:
      - 1. Run both  $M_1$  and  $M_2$  on input w in parallel.
      - 2. If  $M_1$  accepts, accept; if  $M_2$  accepts, reject."

#### An unrecognizable language

▶ **Theorem 4.23**:  $\overline{A_{TM}}$  is not Turing-recognizable.

#### An unrecognizable language

- ▶ **Theorem 4.23**:  $\overline{A}_{TM}$  is not Turing-recognizable.
- Proof:

#### An unrecognizable language

- ▶ **Theorem 4.23**:  $\overline{A}_{TM}$  is not Turing-recognizable.
- ▶ **Proof**:  $A_{\mathsf{TM}}$  is Turing-recognizable (by unnamed Theorem). By Theorem 4.22, if  $\overline{A_{\mathsf{TM}}}$  were Turing-recognizable, then  $A_{\mathsf{TM}}$  would be decidable.  $A_{\mathsf{TM}}$  is undecidable (by Theorem 4.11).

#### Language Nesting

