
Computational Theory
Reducibility

Curtis Larsen

Utah Tech University—Computing

Fall 2024

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 1 / 32



Reducibility Example Undecidable Problems

Undecidability

Reading: Sipser §5.1.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 2 / 32



Reducibility Example Undecidable Problems

Theorem 5.1 HALTTM

HALTTM = {⟨M ,w⟩|M is a TM, w is a string, and M halts on w}

Theorem 5.1: HALTTM is undecidable.

Proof Idea: Use a proof by contradiction. Assume HALTTM is
decidable. Use HALTTM’s decider to construct a decider for ATM. By
theorem 4.11, ATM is undecidable. This is a contradiction. We will call
this a reduction of ATM to HALTTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 3 / 32



Reducibility Example Undecidable Problems

Theorem 5.1 HALTTM

HALTTM = {⟨M ,w⟩|M is a TM, w is a string, and M halts on w}

Theorem 5.1: HALTTM is undecidable.

Proof Idea: Use a proof by contradiction. Assume HALTTM is
decidable. Use HALTTM’s decider to construct a decider for ATM. By
theorem 4.11, ATM is undecidable. This is a contradiction. We will call
this a reduction of ATM to HALTTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 3 / 32



Reducibility Example Undecidable Problems

Theorem 5.1 HALTTM

HALTTM = {⟨M ,w⟩|M is a TM, w is a string, and M halts on w}

Theorem 5.1: HALTTM is undecidable.

Proof Idea: Use a proof by contradiction. Assume HALTTM is
decidable. Use HALTTM’s decider to construct a decider for ATM. By
theorem 4.11, ATM is undecidable. This is a contradiction. We will call
this a reduction of ATM to HALTTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 3 / 32



Reducibility Example Undecidable Problems

Theorem 5.1 HALTTM

HALTTM = {⟨M ,w⟩|M is a TM, w is a string, and M halts on w}

Theorem 5.1: HALTTM is undecidable.

Proof: Assume HALTTM is decidable by R. Construct a decider for
ATM.

Let S = “On input ⟨M ,w⟩ an encoding of a TM and a string:

1. Run R on input ⟨M ,w⟩.
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.
4. If M accepted, accept; if M rejected, reject.”

If M accepts w , S accepts. If M rejects w , S rejects. If M loops on w ,
S rejects. This is a decider for ATM. This is the contradiction.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 4 / 32



Reducibility Example Undecidable Problems

Theorem 5.1 HALTTM

HALTTM = {⟨M ,w⟩|M is a TM, w is a string, and M halts on w}

Theorem 5.1: HALTTM is undecidable.

Proof: Assume HALTTM is decidable by R. Construct a decider for
ATM.

Let S = “On input ⟨M ,w⟩ an encoding of a TM and a string:

1. Run R on input ⟨M ,w⟩.
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.
4. If M accepted, accept; if M rejected, reject.”

If M accepts w , S accepts. If M rejects w , S rejects. If M loops on w ,
S rejects. This is a decider for ATM. This is the contradiction.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 4 / 32



Reducibility Example Undecidable Problems

Theorem 5.2 ETM

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

Theorem 5.2: ETM is undecidable.

Proof Idea: Use a proof by contradiction. Assume ETM is decidable.
Use ETM’s decider to construct a decider for ATM. By theorem 4.11,
ATM is undecidable. This is a contradiction. We will call this a reduction
of ATM to ETM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 5 / 32



Reducibility Example Undecidable Problems

Theorem 5.2 ETM

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

Theorem 5.2: ETM is undecidable.

Proof Idea: Use a proof by contradiction. Assume ETM is decidable.
Use ETM’s decider to construct a decider for ATM. By theorem 4.11,
ATM is undecidable. This is a contradiction. We will call this a reduction
of ATM to ETM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 5 / 32



Reducibility Example Undecidable Problems

Theorem 5.2 ETM

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

Theorem 5.2: ETM is undecidable.

Proof Idea: Use a proof by contradiction. Assume ETM is decidable.
Use ETM’s decider to construct a decider for ATM. By theorem 4.11,
ATM is undecidable. This is a contradiction. We will call this a reduction
of ATM to ETM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 5 / 32



Reducibility Example Undecidable Problems

Theorem 5.2 ETM

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

Theorem 5.2: ETM is undecidable.

Proof: Assume ETM is decidable by R. Construct a decider for ATM.

Intermediate step.

Let M1 = “On input x :

1. if x ̸= w , reject.
2. if x = w , run M on input w and accept if M does.”

Note that L(M1) = ∅ if M does not accept w , and L(M1) = {w} if M
accepts w .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 6 / 32



Reducibility Example Undecidable Problems

Theorem 5.2 ETM

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

Theorem 5.2: ETM is undecidable.

Proof: Continued

Let S = “On input ⟨M ,w⟩ an encoding of a TM and a string:

1. Construct M1 from M and w as described above.
2. Run R on input ⟨M1⟩.
3. If R accepted, reject; if R rejected, accept.”

If M accepts w , then the L(M1) ̸= ∅, so R will reject ⟨M1⟩, and S
accepts. If M does not accept w , then the L(M1) = ∅, so R will accept
⟨M1⟩, and S rejects. This is a decider for ATM. Contradiction with
theorem 4.11.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 7 / 32



Reducibility Example Undecidable Problems

Theorem 5.2 ETM

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

Theorem 5.2: ETM is undecidable.

Proof: Continued

Let S = “On input ⟨M ,w⟩ an encoding of a TM and a string:

1. Construct M1 from M and w as described above.
2. Run R on input ⟨M1⟩.
3. If R accepted, reject; if R rejected, accept.”

If M accepts w , then the L(M1) ̸= ∅, so R will reject ⟨M1⟩, and S
accepts. If M does not accept w , then the L(M1) = ∅, so R will accept
⟨M1⟩, and S rejects. This is a decider for ATM. Contradiction with
theorem 4.11.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 7 / 32



Reducibility Mapping Reducibility

Mapping Reductions

Reading: Sipser §5.3.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 32



Reducibility Mapping Reducibility

Definition 5.17

A function f : Σ∗ → Σ∗ is a computable function if some Turing
machine M , on every input w , halts with just f (w) on its tape.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 9 / 32



Reducibility Mapping Reducibility

Definition 5.20

Language A is mapping reducible to language B , written A ≤m B , if
there is a computable function f : Σ∗ → Σ∗, where for every w ,

w ∈ A ⇔ f (w) ∈ B .

The function f is called the mapping reduction of A to B or the
reduction of A to B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 10 / 32



Reducibility Mapping Reducibility

Definition 5.20

�

A B

w ∈ A ⇔ f (w) ∈ B .

The function f is represented by the two arrows in the diagram above.
The blue arrow indicates w ∈ A ⇒ f (w) ∈ B . The red arrow indicates
w ∈ A ⇒ f (w) ∈ B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 11 / 32



Reducibility Mapping Reducibility

Theorem 5.22

If A ≤m B and B is decidable, then A is decidable.

Proof: Let M be the decider for B and f be the reduction from A to B .

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w).
3. If M accepts f (w), then accept. Otherwise reject.”

N halts. Why? f is a computable function. M is a decider.

N decides A. Why? If w ∈ A, then f (w) ∈ B , and M accepts.
If w ̸∈ A, then f (w) ̸∈ B , and M rejects.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 32



Reducibility Mapping Reducibility

Theorem 5.22

If A ≤m B and B is decidable, then A is decidable.

Proof: Let M be the decider for B and f be the reduction from A to B .

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w).
3. If M accepts f (w), then accept. Otherwise reject.”

N halts. Why? f is a computable function. M is a decider.

N decides A. Why? If w ∈ A, then f (w) ∈ B , and M accepts.
If w ̸∈ A, then f (w) ̸∈ B , and M rejects.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 32



Reducibility Mapping Reducibility

Theorem 5.22

If A ≤m B and B is decidable, then A is decidable.

Proof: Let M be the decider for B and f be the reduction from A to B .

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w).
3. If M accepts f (w), then accept. Otherwise reject.”

N halts. Why? f is a computable function. M is a decider.

N decides A. Why? If w ∈ A, then f (w) ∈ B , and M accepts.
If w ̸∈ A, then f (w) ̸∈ B , and M rejects.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 32



Reducibility Mapping Reducibility

Theorem 5.22

If A ≤m B and B is decidable, then A is decidable.

Proof: Let M be the decider for B and f be the reduction from A to B .

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w).
3. If M accepts f (w), then accept. Otherwise reject.”

N halts. Why?

f is a computable function. M is a decider.

N decides A. Why? If w ∈ A, then f (w) ∈ B , and M accepts.
If w ̸∈ A, then f (w) ̸∈ B , and M rejects.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 32



Reducibility Mapping Reducibility

Theorem 5.22

If A ≤m B and B is decidable, then A is decidable.

Proof: Let M be the decider for B and f be the reduction from A to B .

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w).
3. If M accepts f (w), then accept. Otherwise reject.”

N halts. Why? f is a computable function. M is a decider.

N decides A. Why? If w ∈ A, then f (w) ∈ B , and M accepts.
If w ̸∈ A, then f (w) ̸∈ B , and M rejects.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 32



Reducibility Mapping Reducibility

Theorem 5.22

If A ≤m B and B is decidable, then A is decidable.

Proof: Let M be the decider for B and f be the reduction from A to B .

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w).
3. If M accepts f (w), then accept. Otherwise reject.”

N halts. Why? f is a computable function. M is a decider.

N decides A. Why?

If w ∈ A, then f (w) ∈ B , and M accepts.
If w ̸∈ A, then f (w) ̸∈ B , and M rejects.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 32



Reducibility Mapping Reducibility

Theorem 5.22

If A ≤m B and B is decidable, then A is decidable.

Proof: Let M be the decider for B and f be the reduction from A to B .

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w).
3. If M accepts f (w), then accept. Otherwise reject.”

N halts. Why? f is a computable function. M is a decider.

N decides A. Why? If w ∈ A, then f (w) ∈ B , and M accepts.
If w ̸∈ A, then f (w) ̸∈ B , and M rejects.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 32



Reducibility Mapping Reducibility

Corollary 5.23

If A ≤m B and A is undecidable, then B is undecidable.

Proof: If B is decidable, then A is decidable. Since A is undecidable,
B can’t be decidable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 13 / 32



Reducibility Mapping Reducibility

Corollary 5.23

If A ≤m B and A is undecidable, then B is undecidable.

Proof: If B is decidable, then A is decidable. Since A is undecidable,
B can’t be decidable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 13 / 32



Reducibility Mapping Reducibility

Using Reductions

▶ Our main technique for proving undecidability is to reduce from a
known undecidable language to a suspected undecidedable
language. This will become standardized with mapping
reductions.

▶ Our main technique for proving decidability has been to provide a
decider. We can now also use reduction from a suspected
decidable language to a known decidedable language.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 14 / 32



Reducibility Mapping Reducibility

Reduction Proofs

Steps to a reduction proof.

▶ Select the language to be reduced from, A, and describe its
instances.

▶ Select the language to be reduced to, B , and describe its
instances.

▶ Provide the reduction function that maps any instance of A into
some instance of B . Be sure to prove it is a computable function.

▶ Prove that w ∈ A ⇒ f (w) ∈ B .
▶ Prove that w ∈ A ⇒ f (w) ∈ B . Sometimes this is easier to prove

by showing the equivalent f (w) ∈ B ⇒ w ∈ A.
▶ Conclude that A ≤m B .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 15 / 32



Reducibility Mapping Reducibility

Reduction Proofs

Due to space considerations in these slides, we will not label each of
these steps. But you should observe that they are all there.
Assignments and exam questions will require you to use these steps,
and label them.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 16 / 32



Reducibility Mapping Reducibility

Example 5.24

HALTTM = {⟨M ,w⟩|M is a TM, w is a string, and M halts on w}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

From theorem 4.11, ATM is undecidable. From Corollary 5.23 If
ATM ≤m HALTTM, then HALTTM is undecidable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to HALTTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 17 / 32



Reducibility Mapping Reducibility

Example 5.24

HALTTM = {⟨M ,w⟩|M is a TM, w is a string, and M halts on w}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

From theorem 4.11, ATM is undecidable. From Corollary 5.23 If
ATM ≤m HALTTM, then HALTTM is undecidable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to HALTTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 17 / 32



Reducibility Mapping Reducibility

Example 5.24

HALTTM = {⟨M ,w⟩|M is a TM, w is a string, and M halts on w}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

From theorem 4.11, ATM is undecidable. From Corollary 5.23 If
ATM ≤m HALTTM, then HALTTM is undecidable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to HALTTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 17 / 32



Reducibility Mapping Reducibility

Example 5.24

HALTTM = {⟨M ,w⟩|M is a TM, w is a string, and M halts on w}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

From theorem 4.11, ATM is undecidable. From Corollary 5.23 If
ATM ≤m HALTTM, then HALTTM is undecidable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to HALTTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 17 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to HALTTM

Let F = “On input ⟨M ,w⟩:

1. Let w ′ = w .
2. Construct the following machine M ′.

M ′ = “On input x :
1. Run M on input x .
2. If M accepts, accept.
3. If M rejects, loop.”

3. Output ⟨M ′,w ′⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ F (⟨M ,w⟩) = ⟨M ′,w ′⟩ ∈ HALTTM

▶ F halts. Note that F does not run M ′, it only computes it.
▶ If M accepts w ,M ′ will accept w ′, (will halt).
▶ If M rejects w ,M ′ will loop on w ′, (will not halt).
▶ If M loops on w ,M ′ will loop on w ′, (will not halt).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to HALTTM

Let F = “On input ⟨M ,w⟩:

1. Let w ′ = w .
2. Construct the following machine M ′.

M ′ = “On input x :
1. Run M on input x .
2. If M accepts, accept.
3. If M rejects, loop.”

3. Output ⟨M ′,w ′⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ F (⟨M ,w⟩) = ⟨M ′,w ′⟩ ∈ HALTTM

▶ F halts. Note that F does not run M ′, it only computes it.

▶ If M accepts w ,M ′ will accept w ′, (will halt).
▶ If M rejects w ,M ′ will loop on w ′, (will not halt).
▶ If M loops on w ,M ′ will loop on w ′, (will not halt).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to HALTTM

Let F = “On input ⟨M ,w⟩:

1. Let w ′ = w .
2. Construct the following machine M ′.

M ′ = “On input x :
1. Run M on input x .
2. If M accepts, accept.
3. If M rejects, loop.”

3. Output ⟨M ′,w ′⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ F (⟨M ,w⟩) = ⟨M ′,w ′⟩ ∈ HALTTM

▶ F halts. Note that F does not run M ′, it only computes it.
▶ If M accepts w ,

M ′ will accept w ′, (will halt).
▶ If M rejects w ,M ′ will loop on w ′, (will not halt).
▶ If M loops on w ,M ′ will loop on w ′, (will not halt).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to HALTTM

Let F = “On input ⟨M ,w⟩:

1. Let w ′ = w .
2. Construct the following machine M ′.

M ′ = “On input x :
1. Run M on input x .
2. If M accepts, accept.
3. If M rejects, loop.”

3. Output ⟨M ′,w ′⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ F (⟨M ,w⟩) = ⟨M ′,w ′⟩ ∈ HALTTM

▶ F halts. Note that F does not run M ′, it only computes it.
▶ If M accepts w ,M ′ will accept w ′, (will halt).

▶ If M rejects w ,M ′ will loop on w ′, (will not halt).
▶ If M loops on w ,M ′ will loop on w ′, (will not halt).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to HALTTM

Let F = “On input ⟨M ,w⟩:

1. Let w ′ = w .
2. Construct the following machine M ′.

M ′ = “On input x :
1. Run M on input x .
2. If M accepts, accept.
3. If M rejects, loop.”

3. Output ⟨M ′,w ′⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ F (⟨M ,w⟩) = ⟨M ′,w ′⟩ ∈ HALTTM

▶ F halts. Note that F does not run M ′, it only computes it.
▶ If M accepts w ,M ′ will accept w ′, (will halt).
▶ If M rejects w ,

M ′ will loop on w ′, (will not halt).
▶ If M loops on w ,M ′ will loop on w ′, (will not halt).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to HALTTM

Let F = “On input ⟨M ,w⟩:

1. Let w ′ = w .
2. Construct the following machine M ′.

M ′ = “On input x :
1. Run M on input x .
2. If M accepts, accept.
3. If M rejects, loop.”

3. Output ⟨M ′,w ′⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ F (⟨M ,w⟩) = ⟨M ′,w ′⟩ ∈ HALTTM

▶ F halts. Note that F does not run M ′, it only computes it.
▶ If M accepts w ,M ′ will accept w ′, (will halt).
▶ If M rejects w ,M ′ will loop on w ′, (will not halt).

▶ If M loops on w ,M ′ will loop on w ′, (will not halt).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to HALTTM

Let F = “On input ⟨M ,w⟩:

1. Let w ′ = w .
2. Construct the following machine M ′.

M ′ = “On input x :
1. Run M on input x .
2. If M accepts, accept.
3. If M rejects, loop.”

3. Output ⟨M ′,w ′⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ F (⟨M ,w⟩) = ⟨M ′,w ′⟩ ∈ HALTTM

▶ F halts. Note that F does not run M ′, it only computes it.
▶ If M accepts w ,M ′ will accept w ′, (will halt).
▶ If M rejects w ,M ′ will loop on w ′, (will not halt).
▶ If M loops on w ,

M ′ will loop on w ′, (will not halt).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to HALTTM

Let F = “On input ⟨M ,w⟩:

1. Let w ′ = w .
2. Construct the following machine M ′.

M ′ = “On input x :
1. Run M on input x .
2. If M accepts, accept.
3. If M rejects, loop.”

3. Output ⟨M ′,w ′⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ F (⟨M ,w⟩) = ⟨M ′,w ′⟩ ∈ HALTTM

▶ F halts. Note that F does not run M ′, it only computes it.
▶ If M accepts w ,M ′ will accept w ′, (will halt).
▶ If M rejects w ,M ′ will loop on w ′, (will not halt).
▶ If M loops on w ,M ′ will loop on w ′, (will not halt).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18 / 32



Reducibility Mapping Reducibility

Example 5.26

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) = L(M2)}

From theorem 5.2, ETM is undecidable. From Corollary 5.23 If
ETM ≤m EQTM, then EQTM is undecidable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ETM to EQTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 32



Reducibility Mapping Reducibility

Example 5.26

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) = L(M2)}

From theorem 5.2, ETM is undecidable. From Corollary 5.23 If
ETM ≤m EQTM, then EQTM is undecidable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ETM to EQTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 32



Reducibility Mapping Reducibility

Example 5.26

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) = L(M2)}

From theorem 5.2, ETM is undecidable. From Corollary 5.23 If
ETM ≤m EQTM, then EQTM is undecidable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ETM to EQTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 32



Reducibility Mapping Reducibility

Example 5.26

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) = L(M2)}

From theorem 5.2, ETM is undecidable. From Corollary 5.23 If
ETM ≤m EQTM, then EQTM is undecidable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ETM to EQTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 32



Reducibility Mapping Reducibility

The Reduction of ETM to EQTM

Let G = “On input ⟨M ⟩:

1. Let M1 = M .
2. Construct the following machine M2.

M2 = “On input x :
1. reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ⟩ ∈ ETM ⇔ G(⟨M ⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ G halts.
▶ If L(M ) = ∅, L(M1) = L(M2) = ∅.
▶ If L(M ) ̸= ∅, L(M1) ̸= L(M2) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 32



Reducibility Mapping Reducibility

The Reduction of ETM to EQTM

Let G = “On input ⟨M ⟩:

1. Let M1 = M .
2. Construct the following machine M2.

M2 = “On input x :
1. reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ⟩ ∈ ETM ⇔ G(⟨M ⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ G halts.

▶ If L(M ) = ∅, L(M1) = L(M2) = ∅.
▶ If L(M ) ̸= ∅, L(M1) ̸= L(M2) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 32



Reducibility Mapping Reducibility

The Reduction of ETM to EQTM

Let G = “On input ⟨M ⟩:

1. Let M1 = M .
2. Construct the following machine M2.

M2 = “On input x :
1. reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ⟩ ∈ ETM ⇔ G(⟨M ⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ G halts.
▶ If L(M ) = ∅,

L(M1) = L(M2) = ∅.
▶ If L(M ) ̸= ∅, L(M1) ̸= L(M2) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 32



Reducibility Mapping Reducibility

The Reduction of ETM to EQTM

Let G = “On input ⟨M ⟩:

1. Let M1 = M .
2. Construct the following machine M2.

M2 = “On input x :
1. reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ⟩ ∈ ETM ⇔ G(⟨M ⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ G halts.
▶ If L(M ) = ∅, L(M1) = L(M2) = ∅.

▶ If L(M ) ̸= ∅, L(M1) ̸= L(M2) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 32



Reducibility Mapping Reducibility

The Reduction of ETM to EQTM

Let G = “On input ⟨M ⟩:

1. Let M1 = M .
2. Construct the following machine M2.

M2 = “On input x :
1. reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ⟩ ∈ ETM ⇔ G(⟨M ⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ G halts.
▶ If L(M ) = ∅, L(M1) = L(M2) = ∅.
▶ If L(M ) ̸= ∅,

L(M1) ̸= L(M2) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 32



Reducibility Mapping Reducibility

The Reduction of ETM to EQTM

Let G = “On input ⟨M ⟩:

1. Let M1 = M .
2. Construct the following machine M2.

M2 = “On input x :
1. reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ⟩ ∈ ETM ⇔ G(⟨M ⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ G halts.
▶ If L(M ) = ∅, L(M1) = L(M2) = ∅.
▶ If L(M ) ̸= ∅, L(M1) ̸= L(M2) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 32



Reducibility Mapping Reducibility

Example 5.27 ETM is undecidable

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

ETM = {⟨M ⟩|M is a TM and L(M ) ̸= ∅}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

From theorem 4.11, ATM is undecidable. From Corollary 5.23 If
ATM ≤m ETM, then ETM is undecidable, and ETM is undecidable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to ETM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 32



Reducibility Mapping Reducibility

Example 5.27 ETM is undecidable

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

ETM = {⟨M ⟩|M is a TM and L(M ) ̸= ∅}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

From theorem 4.11, ATM is undecidable. From Corollary 5.23 If
ATM ≤m ETM, then ETM is undecidable, and ETM is undecidable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to ETM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 32



Reducibility Mapping Reducibility

Example 5.27 ETM is undecidable

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

ETM = {⟨M ⟩|M is a TM and L(M ) ̸= ∅}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

From theorem 4.11, ATM is undecidable. From Corollary 5.23 If
ATM ≤m ETM, then ETM is undecidable, and ETM is undecidable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to ETM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 32



Reducibility Mapping Reducibility

Example 5.27 ETM is undecidable

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

ETM = {⟨M ⟩|M is a TM and L(M ) ̸= ∅}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

From theorem 4.11, ATM is undecidable. From Corollary 5.23 If
ATM ≤m ETM, then ETM is undecidable, and ETM is undecidable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to ETM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 32



Reducibility Mapping Reducibility

Example 5.27 ETM is undecidable

ETM = {⟨M ⟩|M is a TM and L(M ) = ∅}

ETM = {⟨M ⟩|M is a TM and L(M ) ̸= ∅}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

From theorem 4.11, ATM is undecidable. From Corollary 5.23 If
ATM ≤m ETM, then ETM is undecidable, and ETM is undecidable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to ETM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to ETM

Let H = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. If x ̸= w , reject.
2. Run M on input w and accept if M does.
3. reject.”

2. Output ⟨M1⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ H (⟨M ,w⟩) = ⟨M1⟩ ∈ ETM

▶ H halts.
▶ If M accepts w ,M1 will accept w , L(M1) ̸= ∅.
▶ If M rejects w ,M1 will reject w , L(M1) = ∅.
▶ If M loops on w ,M1 will loop on w , L(M1) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to ETM

Let H = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. If x ̸= w , reject.
2. Run M on input w and accept if M does.
3. reject.”

2. Output ⟨M1⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ H (⟨M ,w⟩) = ⟨M1⟩ ∈ ETM

▶ H halts.

▶ If M accepts w ,M1 will accept w , L(M1) ̸= ∅.
▶ If M rejects w ,M1 will reject w , L(M1) = ∅.
▶ If M loops on w ,M1 will loop on w , L(M1) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to ETM

Let H = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. If x ̸= w , reject.
2. Run M on input w and accept if M does.
3. reject.”

2. Output ⟨M1⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ H (⟨M ,w⟩) = ⟨M1⟩ ∈ ETM

▶ H halts.
▶ If M accepts w ,

M1 will accept w , L(M1) ̸= ∅.
▶ If M rejects w ,M1 will reject w , L(M1) = ∅.
▶ If M loops on w ,M1 will loop on w , L(M1) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to ETM

Let H = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. If x ̸= w , reject.
2. Run M on input w and accept if M does.
3. reject.”

2. Output ⟨M1⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ H (⟨M ,w⟩) = ⟨M1⟩ ∈ ETM

▶ H halts.
▶ If M accepts w ,M1 will accept w , L(M1) ̸= ∅.

▶ If M rejects w ,M1 will reject w , L(M1) = ∅.
▶ If M loops on w ,M1 will loop on w , L(M1) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to ETM

Let H = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. If x ̸= w , reject.
2. Run M on input w and accept if M does.
3. reject.”

2. Output ⟨M1⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ H (⟨M ,w⟩) = ⟨M1⟩ ∈ ETM

▶ H halts.
▶ If M accepts w ,M1 will accept w , L(M1) ̸= ∅.
▶ If M rejects w ,

M1 will reject w , L(M1) = ∅.
▶ If M loops on w ,M1 will loop on w , L(M1) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to ETM

Let H = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. If x ̸= w , reject.
2. Run M on input w and accept if M does.
3. reject.”

2. Output ⟨M1⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ H (⟨M ,w⟩) = ⟨M1⟩ ∈ ETM

▶ H halts.
▶ If M accepts w ,M1 will accept w , L(M1) ̸= ∅.
▶ If M rejects w ,M1 will reject w , L(M1) = ∅.

▶ If M loops on w ,M1 will loop on w , L(M1) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to ETM

Let H = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. If x ̸= w , reject.
2. Run M on input w and accept if M does.
3. reject.”

2. Output ⟨M1⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ H (⟨M ,w⟩) = ⟨M1⟩ ∈ ETM

▶ H halts.
▶ If M accepts w ,M1 will accept w , L(M1) ̸= ∅.
▶ If M rejects w ,M1 will reject w , L(M1) = ∅.
▶ If M loops on w ,

M1 will loop on w , L(M1) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to ETM

Let H = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. If x ̸= w , reject.
2. Run M on input w and accept if M does.
3. reject.”

2. Output ⟨M1⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ H (⟨M ,w⟩) = ⟨M1⟩ ∈ ETM

▶ H halts.
▶ If M accepts w ,M1 will accept w , L(M1) ̸= ∅.
▶ If M rejects w ,M1 will reject w , L(M1) = ∅.
▶ If M loops on w ,M1 will loop on w , L(M1) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 32



Reducibility Mapping Reducibility

The Reduction of ATM to ETM

Let H = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. If x ̸= w , reject.
2. Run M on input w and accept if M does.
3. reject.”

2. Output ⟨M1⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ H (⟨M ,w⟩) = ⟨M1⟩ ∈ ETM

▶ H halts.
▶ If M accepts w ,M1 will accept w , L(M1) ̸= ∅.
▶ If M rejects w ,M1 will reject w , L(M1) = ∅.
▶ If M loops on w ,M1 will loop on w , L(M1) = ∅.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 32



Reducibility Mapping Reducibility - Turing-Recognizable

Theorem 5.28

If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.

Proof: Let M be the recognizer for B and f be the reduction from A to
B .

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w).
3. If M accepts f (w), then accept. Otherwise reject.”

N accepts w if M accepts f (w). N rejects w if M rejects f (w). N
loops on w if M loops on f (w).

N recognizes A.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 32



Reducibility Mapping Reducibility - Turing-Recognizable

Theorem 5.28

If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.

Proof: Let M be the recognizer for B and f be the reduction from A to
B .

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w).
3. If M accepts f (w), then accept. Otherwise reject.”

N accepts w if M accepts f (w). N rejects w if M rejects f (w). N
loops on w if M loops on f (w).

N recognizes A.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 32



Reducibility Mapping Reducibility - Turing-Recognizable

Theorem 5.28

If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.

Proof: Let M be the recognizer for B and f be the reduction from A to
B .

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w).
3. If M accepts f (w), then accept. Otherwise reject.”

N accepts w if M accepts f (w). N rejects w if M rejects f (w). N
loops on w if M loops on f (w).

N recognizes A.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 32



Reducibility Mapping Reducibility - Turing-Recognizable

Theorem 5.28

If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.

Proof: Let M be the recognizer for B and f be the reduction from A to
B .

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w).
3. If M accepts f (w), then accept. Otherwise reject.”

N accepts w if M accepts f (w).

N rejects w if M rejects f (w). N
loops on w if M loops on f (w).

N recognizes A.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 32



Reducibility Mapping Reducibility - Turing-Recognizable

Theorem 5.28

If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.

Proof: Let M be the recognizer for B and f be the reduction from A to
B .

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w).
3. If M accepts f (w), then accept. Otherwise reject.”

N accepts w if M accepts f (w). N rejects w if M rejects f (w).

N
loops on w if M loops on f (w).

N recognizes A.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 32



Reducibility Mapping Reducibility - Turing-Recognizable

Theorem 5.28

If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.

Proof: Let M be the recognizer for B and f be the reduction from A to
B .

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w).
3. If M accepts f (w), then accept. Otherwise reject.”

N accepts w if M accepts f (w). N rejects w if M rejects f (w). N
loops on w if M loops on f (w).

N recognizes A.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 32



Reducibility Mapping Reducibility - Turing-Recognizable

Theorem 5.28

If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.

Proof: Let M be the recognizer for B and f be the reduction from A to
B .

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w).
3. If M accepts f (w), then accept. Otherwise reject.”

N accepts w if M accepts f (w). N rejects w if M rejects f (w). N
loops on w if M loops on f (w).

N recognizes A.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 32



Reducibility Mapping Reducibility - Turing-Recognizable

Corollary 5.29

If A ≤m B and A is not Turing-recognizable, then B is not
Turing-recognizable.

Proof: If B is Turing-recognizable, then A is Turing-recognizable.
Since A is not Turing-recognizable, B can’t be Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 24 / 32



Reducibility Mapping Reducibility - Turing-Recognizable

Corollary 5.29

If A ≤m B and A is not Turing-recognizable, then B is not
Turing-recognizable.

Proof: If B is Turing-recognizable, then A is Turing-recognizable.
Since A is not Turing-recognizable, B can’t be Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 24 / 32



Reducibility Mapping Reducibility - Turing-Recognizable

Using Corollary 5.29

A typical use of Corollary 5.29 is to prove that a language, B , not
Turing-recognizable.

▶ ATM is not Turing-recognizable. (Corollary 4.23)
▶ A ≤m B ⇔ A ≤m B . By definition.
▶ Provide a mapping reduction ATM ≤m B .
▶ This means ATM ≤m B .
▶ By Corollary 5.29, B is not Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 25 / 32



Reducibility Mapping Reducibility - Theorem 5.30

Theorem 5.30

EQTM is neither Turing-recognizable nor co-Turing-recognizable.

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) = L(M2)}

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) ̸= L(M2)}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

We will use reductions from ATM to EQTM and EQTM. These reductions
will be paired with Corollary 5.29.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 32



Reducibility Mapping Reducibility - Theorem 5.30

Theorem 5.30

EQTM is neither Turing-recognizable nor co-Turing-recognizable.

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) = L(M2)}

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) ̸= L(M2)}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

We will use reductions from ATM to EQTM and EQTM. These reductions
will be paired with Corollary 5.29.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 32



Reducibility Mapping Reducibility - Theorem 5.30

Theorem 5.30

EQTM is neither Turing-recognizable nor co-Turing-recognizable.

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) = L(M2)}

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) ̸= L(M2)}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

We will use reductions from ATM to EQTM and EQTM. These reductions
will be paired with Corollary 5.29.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 32



Reducibility Mapping Reducibility - Theorem 5.30

Theorem 5.30

EQTM is neither Turing-recognizable nor co-Turing-recognizable.

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) = L(M2)}

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) ̸= L(M2)}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

We will use reductions from ATM to EQTM and EQTM. These reductions
will be paired with Corollary 5.29.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 32



Reducibility Mapping Reducibility - Theorem 5.30

Theorem 5.30

EQTM is neither Turing-recognizable nor co-Turing-recognizable.

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) = L(M2)}

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) ̸= L(M2)}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

We will use reductions from ATM to EQTM and EQTM. These reductions
will be paired with Corollary 5.29.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 32



Reducibility Mapping Reducibility - Theorem 5.30

EQTM is not Turing-recognizable

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) ̸= L(M2)}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

Proof strategy: Providing a reduction from ATM to EQTM. Deduce that
ATM ≤m EQTM. By corollary 4.23, ATM is not Turing-recognizable. By
corollary 5.29, EQTM is not Turing-recognizable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to EQTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 32



Reducibility Mapping Reducibility - Theorem 5.30

EQTM is not Turing-recognizable

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) ̸= L(M2)}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

Proof strategy: Providing a reduction from ATM to EQTM. Deduce that
ATM ≤m EQTM. By corollary 4.23, ATM is not Turing-recognizable. By
corollary 5.29, EQTM is not Turing-recognizable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to EQTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 32



Reducibility Mapping Reducibility - Theorem 5.30

EQTM is not Turing-recognizable

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) ̸= L(M2)}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

Proof strategy: Providing a reduction from ATM to EQTM. Deduce that
ATM ≤m EQTM. By corollary 4.23, ATM is not Turing-recognizable. By
corollary 5.29, EQTM is not Turing-recognizable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to EQTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let f = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. reject.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ f (⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.
▶ If M accepts w , L(M1) ̸= L(M2).
▶ If M rejects w , L(M1) = L(M2).
▶ If M loops on w , L(M1) = L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let f = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. reject.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ f (⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.

▶ If M accepts w , L(M1) ̸= L(M2).
▶ If M rejects w , L(M1) = L(M2).
▶ If M loops on w , L(M1) = L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let f = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. reject.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ f (⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.
▶ If M accepts w ,

L(M1) ̸= L(M2).
▶ If M rejects w , L(M1) = L(M2).
▶ If M loops on w , L(M1) = L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let f = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. reject.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ f (⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.
▶ If M accepts w , L(M1) ̸= L(M2).

▶ If M rejects w , L(M1) = L(M2).
▶ If M loops on w , L(M1) = L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let f = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. reject.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ f (⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.
▶ If M accepts w , L(M1) ̸= L(M2).
▶ If M rejects w ,

L(M1) = L(M2).
▶ If M loops on w , L(M1) = L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let f = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. reject.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ f (⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.
▶ If M accepts w , L(M1) ̸= L(M2).
▶ If M rejects w , L(M1) = L(M2).

▶ If M loops on w , L(M1) = L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let f = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. reject.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ f (⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.
▶ If M accepts w , L(M1) ̸= L(M2).
▶ If M rejects w , L(M1) = L(M2).
▶ If M loops on w ,

L(M1) = L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let f = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. reject.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ f (⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.
▶ If M accepts w , L(M1) ̸= L(M2).
▶ If M rejects w , L(M1) = L(M2).
▶ If M loops on w , L(M1) = L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 32



Reducibility Mapping Reducibility - Theorem 5.30

EQTM is not Turing-recognizable

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) = L(M2)}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

Proof strategy: Provide a reduction from ATM to EQTM. Deduce that
ATM ≤m EQTM. By corollary 4.23, ATM is not Turing-recognizable. By
corollary 5.29, EQTM is not Turing-recognizable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to EQTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 29 / 32



Reducibility Mapping Reducibility - Theorem 5.30

EQTM is not Turing-recognizable

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) = L(M2)}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

Proof strategy: Provide a reduction from ATM to EQTM. Deduce that
ATM ≤m EQTM. By corollary 4.23, ATM is not Turing-recognizable. By
corollary 5.29, EQTM is not Turing-recognizable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to EQTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 29 / 32



Reducibility Mapping Reducibility - Theorem 5.30

EQTM is not Turing-recognizable

EQTM = {⟨M1,M2⟩|M1 and M2 are TMs and L(M1) = L(M2)}

ATM = {⟨M ,w⟩|M is a TM, w is a string, and M accepts w}

Proof strategy: Provide a reduction from ATM to EQTM. Deduce that
ATM ≤m EQTM. By corollary 4.23, ATM is not Turing-recognizable. By
corollary 5.29, EQTM is not Turing-recognizable.

Our task is to provide the reduction. That is, the computable function
that mapping reduces ATM to EQTM.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 29 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let g = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. accept.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ g(⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.
▶ If M accepts w , L(M1) = L(M2).
▶ If M rejects w , L(M1) ̸= L(M2).
▶ If M loops on w , L(M1) ̸= L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 30 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let g = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. accept.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ g(⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.

▶ If M accepts w , L(M1) = L(M2).
▶ If M rejects w , L(M1) ̸= L(M2).
▶ If M loops on w , L(M1) ̸= L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 30 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let g = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. accept.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ g(⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.
▶ If M accepts w ,

L(M1) = L(M2).
▶ If M rejects w , L(M1) ̸= L(M2).
▶ If M loops on w , L(M1) ̸= L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 30 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let g = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. accept.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ g(⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.
▶ If M accepts w , L(M1) = L(M2).

▶ If M rejects w , L(M1) ̸= L(M2).
▶ If M loops on w , L(M1) ̸= L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 30 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let g = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. accept.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ g(⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.
▶ If M accepts w , L(M1) = L(M2).
▶ If M rejects w ,

L(M1) ̸= L(M2).
▶ If M loops on w , L(M1) ̸= L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 30 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let g = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. accept.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ g(⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.
▶ If M accepts w , L(M1) = L(M2).
▶ If M rejects w , L(M1) ̸= L(M2).

▶ If M loops on w , L(M1) ̸= L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 30 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let g = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. accept.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ g(⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.
▶ If M accepts w , L(M1) = L(M2).
▶ If M rejects w , L(M1) ̸= L(M2).
▶ If M loops on w ,

L(M1) ̸= L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 30 / 32



Reducibility Mapping Reducibility - Theorem 5.30

The Reduction of ATM to EQTM

Let g = “On input ⟨M ,w⟩:

1. Construct the following machine M1.
M1 = “On input x :

1. accept.”

2. Construct the following machine M2.
M2 = “On input x :

1. Run M on w . If M accepts w , accept; otherwise reject.”

3. Output ⟨M1,M2⟩.”

Analysis: ⟨M ,w⟩ ∈ ATM ⇔ g(⟨M ,w⟩) = ⟨M1,M2⟩ ∈ EQTM

▶ f halts.
▶ If M accepts w , L(M1) = L(M2).
▶ If M rejects w , L(M1) ̸= L(M2).
▶ If M loops on w , L(M1) ̸= L(M2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 30 / 32



Languages

Summary

Turing-Unrecognizable

Languages

Mapping Reduction

Turing-Recognizable Languages

Recognizer, Mapping Reduction

Decidable Languages

Decider, Mapping Reduction

Context-free Languages

CFG, PDA

Regular Languages

DFA, NFA, RE

PL for RL

PL for CFL

Mapping Reduction

Mapping Reduction

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 31 / 32



Theorems

▶ THEOREM 5.1 HALTTM is undecidable.

▶ THEOREM 5.2 ETM is undecidable.
▶ THEOREM 5.3 REGULARTM is undecidable.
▶ THEOREM 5.4 EQTM is undecidable.
▶ DEFINITION 5.17 computable function.
▶ DEFINITION 5.20 mapping reducible.
▶ THEOREM 5.22 If A ≤m B and B is decidable, then A is decidable.
▶ COROLLARY 5.23 If A ≤m B and A is undecidable, then B is

undecidable.
▶ THEOREM 5.28 If A ≤m B and B is Turing-recognizable, then A is

Turing-recognizable.
▶ COROLLARY 5.29 If A ≤m B and A is not Turing-recognizable,

then B is not Turing-recognizable.
▶ THEOREM 5.30 If EQTM is neither Turing-recognizable nor

co-Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 32



Theorems

▶ THEOREM 5.1 HALTTM is undecidable.
▶ THEOREM 5.2 ETM is undecidable.

▶ THEOREM 5.3 REGULARTM is undecidable.
▶ THEOREM 5.4 EQTM is undecidable.
▶ DEFINITION 5.17 computable function.
▶ DEFINITION 5.20 mapping reducible.
▶ THEOREM 5.22 If A ≤m B and B is decidable, then A is decidable.
▶ COROLLARY 5.23 If A ≤m B and A is undecidable, then B is

undecidable.
▶ THEOREM 5.28 If A ≤m B and B is Turing-recognizable, then A is

Turing-recognizable.
▶ COROLLARY 5.29 If A ≤m B and A is not Turing-recognizable,

then B is not Turing-recognizable.
▶ THEOREM 5.30 If EQTM is neither Turing-recognizable nor

co-Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 32



Theorems

▶ THEOREM 5.1 HALTTM is undecidable.
▶ THEOREM 5.2 ETM is undecidable.
▶ THEOREM 5.3 REGULARTM is undecidable.

▶ THEOREM 5.4 EQTM is undecidable.
▶ DEFINITION 5.17 computable function.
▶ DEFINITION 5.20 mapping reducible.
▶ THEOREM 5.22 If A ≤m B and B is decidable, then A is decidable.
▶ COROLLARY 5.23 If A ≤m B and A is undecidable, then B is

undecidable.
▶ THEOREM 5.28 If A ≤m B and B is Turing-recognizable, then A is

Turing-recognizable.
▶ COROLLARY 5.29 If A ≤m B and A is not Turing-recognizable,

then B is not Turing-recognizable.
▶ THEOREM 5.30 If EQTM is neither Turing-recognizable nor

co-Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 32



Theorems

▶ THEOREM 5.1 HALTTM is undecidable.
▶ THEOREM 5.2 ETM is undecidable.
▶ THEOREM 5.3 REGULARTM is undecidable.
▶ THEOREM 5.4 EQTM is undecidable.

▶ DEFINITION 5.17 computable function.
▶ DEFINITION 5.20 mapping reducible.
▶ THEOREM 5.22 If A ≤m B and B is decidable, then A is decidable.
▶ COROLLARY 5.23 If A ≤m B and A is undecidable, then B is

undecidable.
▶ THEOREM 5.28 If A ≤m B and B is Turing-recognizable, then A is

Turing-recognizable.
▶ COROLLARY 5.29 If A ≤m B and A is not Turing-recognizable,

then B is not Turing-recognizable.
▶ THEOREM 5.30 If EQTM is neither Turing-recognizable nor

co-Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 32



Theorems

▶ THEOREM 5.1 HALTTM is undecidable.
▶ THEOREM 5.2 ETM is undecidable.
▶ THEOREM 5.3 REGULARTM is undecidable.
▶ THEOREM 5.4 EQTM is undecidable.
▶ DEFINITION 5.17 computable function.

▶ DEFINITION 5.20 mapping reducible.
▶ THEOREM 5.22 If A ≤m B and B is decidable, then A is decidable.
▶ COROLLARY 5.23 If A ≤m B and A is undecidable, then B is

undecidable.
▶ THEOREM 5.28 If A ≤m B and B is Turing-recognizable, then A is

Turing-recognizable.
▶ COROLLARY 5.29 If A ≤m B and A is not Turing-recognizable,

then B is not Turing-recognizable.
▶ THEOREM 5.30 If EQTM is neither Turing-recognizable nor

co-Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 32



Theorems

▶ THEOREM 5.1 HALTTM is undecidable.
▶ THEOREM 5.2 ETM is undecidable.
▶ THEOREM 5.3 REGULARTM is undecidable.
▶ THEOREM 5.4 EQTM is undecidable.
▶ DEFINITION 5.17 computable function.
▶ DEFINITION 5.20 mapping reducible.

▶ THEOREM 5.22 If A ≤m B and B is decidable, then A is decidable.
▶ COROLLARY 5.23 If A ≤m B and A is undecidable, then B is

undecidable.
▶ THEOREM 5.28 If A ≤m B and B is Turing-recognizable, then A is

Turing-recognizable.
▶ COROLLARY 5.29 If A ≤m B and A is not Turing-recognizable,

then B is not Turing-recognizable.
▶ THEOREM 5.30 If EQTM is neither Turing-recognizable nor

co-Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 32



Theorems

▶ THEOREM 5.1 HALTTM is undecidable.
▶ THEOREM 5.2 ETM is undecidable.
▶ THEOREM 5.3 REGULARTM is undecidable.
▶ THEOREM 5.4 EQTM is undecidable.
▶ DEFINITION 5.17 computable function.
▶ DEFINITION 5.20 mapping reducible.
▶ THEOREM 5.22 If A ≤m B and B is decidable, then A is decidable.

▶ COROLLARY 5.23 If A ≤m B and A is undecidable, then B is
undecidable.

▶ THEOREM 5.28 If A ≤m B and B is Turing-recognizable, then A is
Turing-recognizable.

▶ COROLLARY 5.29 If A ≤m B and A is not Turing-recognizable,
then B is not Turing-recognizable.

▶ THEOREM 5.30 If EQTM is neither Turing-recognizable nor
co-Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 32



Theorems

▶ THEOREM 5.1 HALTTM is undecidable.
▶ THEOREM 5.2 ETM is undecidable.
▶ THEOREM 5.3 REGULARTM is undecidable.
▶ THEOREM 5.4 EQTM is undecidable.
▶ DEFINITION 5.17 computable function.
▶ DEFINITION 5.20 mapping reducible.
▶ THEOREM 5.22 If A ≤m B and B is decidable, then A is decidable.
▶ COROLLARY 5.23 If A ≤m B and A is undecidable, then B is

undecidable.

▶ THEOREM 5.28 If A ≤m B and B is Turing-recognizable, then A is
Turing-recognizable.

▶ COROLLARY 5.29 If A ≤m B and A is not Turing-recognizable,
then B is not Turing-recognizable.

▶ THEOREM 5.30 If EQTM is neither Turing-recognizable nor
co-Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 32



Theorems

▶ THEOREM 5.1 HALTTM is undecidable.
▶ THEOREM 5.2 ETM is undecidable.
▶ THEOREM 5.3 REGULARTM is undecidable.
▶ THEOREM 5.4 EQTM is undecidable.
▶ DEFINITION 5.17 computable function.
▶ DEFINITION 5.20 mapping reducible.
▶ THEOREM 5.22 If A ≤m B and B is decidable, then A is decidable.
▶ COROLLARY 5.23 If A ≤m B and A is undecidable, then B is

undecidable.
▶ THEOREM 5.28 If A ≤m B and B is Turing-recognizable, then A is

Turing-recognizable.

▶ COROLLARY 5.29 If A ≤m B and A is not Turing-recognizable,
then B is not Turing-recognizable.

▶ THEOREM 5.30 If EQTM is neither Turing-recognizable nor
co-Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 32



Theorems

▶ THEOREM 5.1 HALTTM is undecidable.
▶ THEOREM 5.2 ETM is undecidable.
▶ THEOREM 5.3 REGULARTM is undecidable.
▶ THEOREM 5.4 EQTM is undecidable.
▶ DEFINITION 5.17 computable function.
▶ DEFINITION 5.20 mapping reducible.
▶ THEOREM 5.22 If A ≤m B and B is decidable, then A is decidable.
▶ COROLLARY 5.23 If A ≤m B and A is undecidable, then B is

undecidable.
▶ THEOREM 5.28 If A ≤m B and B is Turing-recognizable, then A is

Turing-recognizable.
▶ COROLLARY 5.29 If A ≤m B and A is not Turing-recognizable,

then B is not Turing-recognizable.

▶ THEOREM 5.30 If EQTM is neither Turing-recognizable nor
co-Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 32



Theorems

▶ THEOREM 5.1 HALTTM is undecidable.
▶ THEOREM 5.2 ETM is undecidable.
▶ THEOREM 5.3 REGULARTM is undecidable.
▶ THEOREM 5.4 EQTM is undecidable.
▶ DEFINITION 5.17 computable function.
▶ DEFINITION 5.20 mapping reducible.
▶ THEOREM 5.22 If A ≤m B and B is decidable, then A is decidable.
▶ COROLLARY 5.23 If A ≤m B and A is undecidable, then B is

undecidable.
▶ THEOREM 5.28 If A ≤m B and B is Turing-recognizable, then A is

Turing-recognizable.
▶ COROLLARY 5.29 If A ≤m B and A is not Turing-recognizable,

then B is not Turing-recognizable.
▶ THEOREM 5.30 If EQTM is neither Turing-recognizable nor

co-Turing-recognizable.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 32


	Reducibility
	Example Undecidable Problems
	Mapping Reducibility
	Mapping Reducibility - Turing-Recognizable
	Mapping Reducibility - Theorem 5.30

	Languages
	Theorems

