
Computational Theory
Time Complexity

Curtis Larsen

Utah Tech University—Computing

Fall 2024

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 1 / 88

Measuring Complexity

Measuring Complexity

Reading: Sipser §7.1.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 2 / 88

Measuring Complexity

Language Landscape

Turing-Unrecognizable

Languages

Mapping Reduction

Turing-Recognizable Languages

Recognizer, Mapping Reduction

Decidable Languages

Decider, Mapping Reduction

Context-free Languages

CFG, PDA

Regular Languages

DFA, NFA, RE

PL for RL

PL for CFL

Mapping Reduction

Mapping Reduction

We are only concerned with Decidable languages.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 3 / 88

Measuring Complexity Big-O and small-o

Definition 7.1

Let M be a deterministic Turing machine that halts on all inputs. The
running time or time complexity of M is the function f : N→ N,
where f (n) is the maximum number of steps that M uses on any input
of length n. If f (n) is the running time of M , we say that M runs in time
f (n) and that M is an f (n) time Turing machine. Customarily we use n
to represent the length of the input.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 4 / 88

Measuring Complexity Big-O and small-o

Definition 7.2

Big-O

Let f and g be functions f , g : N→ R+. Say that f (n) = O(g(n)) if
positive integers c and n0 exist such that for every integer n ≥ n0,

f (n) ≤ c · g(n)

When f (n) = O(g(n)), we say that g(n) is an upper bound. for f (n),
or more precisely, that g(n). is an asymptotic upper bound for f (n),
to emphasize that we are suppressing constant factors.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 5 / 88

Measuring Complexity Big-O and small-o

Definition 7.5

Small-o

Let f and g be functions f , g : N→ R+. Say that f (n) = o(g(n)) if

lim
n→∞

f (n)

g(n)
= 0.

In other words, f (n) = o(g(n)) means that for any real number
c > 0, a number n0 exists, such that for every integer n ≥ n0.

f (n) < c · g(n).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 6 / 88

Measuring Complexity Analyzing Algorithms

An Example Language

A = {0k1k |k ≥ 0}

A decider for A.

Let M1 = “On input string w :

1. Scan across the tape, reject if a 0 is found to the right of a 1.
2. Repeat if both 0s and 1s are remain on the tape:
3. Scan across the tape, crossing off a single 0 and a single 1.
4. If 0s or 1s still remain on the tape, reject; Otherwise, accept.”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 7 / 88

Measuring Complexity Analyzing Algorithms

An Example Language

A = {0k1k |k ≥ 0}

A decider for A.

Let M1 = “On input string w :

1. Scan across the tape, reject if a 0 is found to the right of a 1.
2. Repeat if both 0s and 1s are remain on the tape:
3. Scan across the tape, crossing off a single 0 and a single 1.
4. If 0s or 1s still remain on the tape, reject; Otherwise, accept.”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 7 / 88

Measuring Complexity Analyzing Algorithms

Analyzing Complexity

Let M1 = “On input string w :

1. Scan across the tape, reject if a 0 is found to the right of a 1.

O(n)

2. Repeat if both 0s and 1s are remain on the tape: O(n)

3. Scan across the tape, crossing off a single 0 and a single 1. O(n)

4. If 0s or 1s still remain on the tape, reject; Otherwise, accept.”O(n)

Total running time: O(n) +O(n)O(n) +O(n) = O(n2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 88

Measuring Complexity Analyzing Algorithms

Analyzing Complexity

Let M1 = “On input string w :

1. Scan across the tape, reject if a 0 is found to the right of a 1. O(n)

2. Repeat if both 0s and 1s are remain on the tape:

O(n)

3. Scan across the tape, crossing off a single 0 and a single 1. O(n)

4. If 0s or 1s still remain on the tape, reject; Otherwise, accept.”O(n)

Total running time: O(n) +O(n)O(n) +O(n) = O(n2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 88

Measuring Complexity Analyzing Algorithms

Analyzing Complexity

Let M1 = “On input string w :

1. Scan across the tape, reject if a 0 is found to the right of a 1. O(n)

2. Repeat if both 0s and 1s are remain on the tape: O(n)

3. Scan across the tape, crossing off a single 0 and a single 1.

O(n)

4. If 0s or 1s still remain on the tape, reject; Otherwise, accept.”O(n)

Total running time: O(n) +O(n)O(n) +O(n) = O(n2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 88

Measuring Complexity Analyzing Algorithms

Analyzing Complexity

Let M1 = “On input string w :

1. Scan across the tape, reject if a 0 is found to the right of a 1. O(n)

2. Repeat if both 0s and 1s are remain on the tape: O(n)

3. Scan across the tape, crossing off a single 0 and a single 1. O(n)

4. If 0s or 1s still remain on the tape, reject; Otherwise, accept.”

O(n)

Total running time: O(n) +O(n)O(n) +O(n) = O(n2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 88

Measuring Complexity Analyzing Algorithms

Analyzing Complexity

Let M1 = “On input string w :

1. Scan across the tape, reject if a 0 is found to the right of a 1. O(n)

2. Repeat if both 0s and 1s are remain on the tape: O(n)

3. Scan across the tape, crossing off a single 0 and a single 1. O(n)

4. If 0s or 1s still remain on the tape, reject; Otherwise, accept.”O(n)

Total running time: O(n) +O(n)O(n) +O(n) = O(n2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 88

Measuring Complexity Analyzing Algorithms

Analyzing Complexity

Let M1 = “On input string w :

1. Scan across the tape, reject if a 0 is found to the right of a 1. O(n)

2. Repeat if both 0s and 1s are remain on the tape: O(n)

3. Scan across the tape, crossing off a single 0 and a single 1. O(n)

4. If 0s or 1s still remain on the tape, reject; Otherwise, accept.”O(n)

Total running time:

O(n) +O(n)O(n) +O(n) = O(n2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 88

Measuring Complexity Analyzing Algorithms

Analyzing Complexity

Let M1 = “On input string w :

1. Scan across the tape, reject if a 0 is found to the right of a 1. O(n)

2. Repeat if both 0s and 1s are remain on the tape: O(n)

3. Scan across the tape, crossing off a single 0 and a single 1. O(n)

4. If 0s or 1s still remain on the tape, reject; Otherwise, accept.”O(n)

Total running time: O(n) +O(n)O(n) +O(n) = O(n2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 8 / 88

Measuring Complexity Analyzing Algorithms

Definition 7.7

Let t : N→ R+. Define the time complexity class, TIME(t(n)), to be
the collection of all languages that are decidable by an O(t(n)) time
Turing machine.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 9 / 88

Measuring Complexity Analyzing Algorithms

Example Language

Because the complexity of M1 is O(n2), we can say that
A ∈ TIME(n2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 10 / 88

Measuring Complexity Analyzing Algorithms

An Example Language

A = {0k1k |k ≥ 0}

Another decider for A. This decider is a two-tape deterministic Turing
machine.

Let M3 = “On input string w :

1. Scan across tape 1, and reject if a 0 is found to the right of a 1.
2. Scan across the 0s on tape 1, until the first 1, copying the 0s onto

tape 2.
3. Scan across the 1s on tape 1, until the end of input. For each 1

read on tape 1, cross of a 0 on tape 2. If all 0s are crossed off
before all the 1s are read, reject.

4. If all the 0s have been crossed off, accept; otherwise, reject.”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 11 / 88

Measuring Complexity Analyzing Algorithms

An Example Language

A = {0k1k |k ≥ 0}

Another decider for A. This decider is a two-tape deterministic Turing
machine.

Let M3 = “On input string w :

1. Scan across tape 1, and reject if a 0 is found to the right of a 1.
2. Scan across the 0s on tape 1, until the first 1, copying the 0s onto

tape 2.
3. Scan across the 1s on tape 1, until the end of input. For each 1

read on tape 1, cross of a 0 on tape 2. If all 0s are crossed off
before all the 1s are read, reject.

4. If all the 0s have been crossed off, accept; otherwise, reject.”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 11 / 88

Measuring Complexity Analyzing Algorithms

An Example Language

A = {0k1k |k ≥ 0}

Another decider for A. This decider is a two-tape deterministic Turing
machine.

Let M3 = “On input string w :

1. Scan across tape 1, and reject if a 0 is found to the right of a 1.
2. Scan across the 0s on tape 1, until the first 1, copying the 0s onto

tape 2.
3. Scan across the 1s on tape 1, until the end of input. For each 1

read on tape 1, cross of a 0 on tape 2. If all 0s are crossed off
before all the 1s are read, reject.

4. If all the 0s have been crossed off, accept; otherwise, reject.”
Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 11 / 88

Measuring Complexity Analyzing Algorithms

Analyzing Complexity

Another decider for A. This decider is a two-tape deterministic Turing
machine.

Let M3 = “On input string w :

1. Scan across tape 1, and reject if a 0 is found to the right of a 1.

O(n)

2. Scan across the 0s on tape 1, until the first 1, copying the 0s onto
tape 2. O(n)

3. Scan across the 1s on tape 1, until the end of input. For each 1
read on tape 1, cross of a 0 on tape 2. If all 0s are crossed off
before all the 1s are read, reject. O(n)

4. If all the 0s have been crossed off, accept; otherwise, reject.” O(n)

Total running time: O(n) +O(n) +O(n) +O(n) = O(n).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 88

Measuring Complexity Analyzing Algorithms

Analyzing Complexity

Another decider for A. This decider is a two-tape deterministic Turing
machine.

Let M3 = “On input string w :

1. Scan across tape 1, and reject if a 0 is found to the right of a 1.
O(n)

2. Scan across the 0s on tape 1, until the first 1, copying the 0s onto
tape 2.

O(n)

3. Scan across the 1s on tape 1, until the end of input. For each 1
read on tape 1, cross of a 0 on tape 2. If all 0s are crossed off
before all the 1s are read, reject. O(n)

4. If all the 0s have been crossed off, accept; otherwise, reject.” O(n)

Total running time: O(n) +O(n) +O(n) +O(n) = O(n).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 88

Measuring Complexity Analyzing Algorithms

Analyzing Complexity

Another decider for A. This decider is a two-tape deterministic Turing
machine.

Let M3 = “On input string w :

1. Scan across tape 1, and reject if a 0 is found to the right of a 1.
O(n)

2. Scan across the 0s on tape 1, until the first 1, copying the 0s onto
tape 2. O(n)

3. Scan across the 1s on tape 1, until the end of input. For each 1
read on tape 1, cross of a 0 on tape 2. If all 0s are crossed off
before all the 1s are read, reject.

O(n)

4. If all the 0s have been crossed off, accept; otherwise, reject.” O(n)

Total running time: O(n) +O(n) +O(n) +O(n) = O(n).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 88

Measuring Complexity Analyzing Algorithms

Analyzing Complexity

Another decider for A. This decider is a two-tape deterministic Turing
machine.

Let M3 = “On input string w :

1. Scan across tape 1, and reject if a 0 is found to the right of a 1.
O(n)

2. Scan across the 0s on tape 1, until the first 1, copying the 0s onto
tape 2. O(n)

3. Scan across the 1s on tape 1, until the end of input. For each 1
read on tape 1, cross of a 0 on tape 2. If all 0s are crossed off
before all the 1s are read, reject. O(n)

4. If all the 0s have been crossed off, accept; otherwise, reject.”

O(n)

Total running time: O(n) +O(n) +O(n) +O(n) = O(n).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 88

Measuring Complexity Analyzing Algorithms

Analyzing Complexity

Another decider for A. This decider is a two-tape deterministic Turing
machine.

Let M3 = “On input string w :

1. Scan across tape 1, and reject if a 0 is found to the right of a 1.
O(n)

2. Scan across the 0s on tape 1, until the first 1, copying the 0s onto
tape 2. O(n)

3. Scan across the 1s on tape 1, until the end of input. For each 1
read on tape 1, cross of a 0 on tape 2. If all 0s are crossed off
before all the 1s are read, reject. O(n)

4. If all the 0s have been crossed off, accept; otherwise, reject.” O(n)

Total running time: O(n) +O(n) +O(n) +O(n) = O(n).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 88

Measuring Complexity Analyzing Algorithms

Analyzing Complexity

Another decider for A. This decider is a two-tape deterministic Turing
machine.

Let M3 = “On input string w :

1. Scan across tape 1, and reject if a 0 is found to the right of a 1.
O(n)

2. Scan across the 0s on tape 1, until the first 1, copying the 0s onto
tape 2. O(n)

3. Scan across the 1s on tape 1, until the end of input. For each 1
read on tape 1, cross of a 0 on tape 2. If all 0s are crossed off
before all the 1s are read, reject. O(n)

4. If all the 0s have been crossed off, accept; otherwise, reject.” O(n)

Total running time:

O(n) +O(n) +O(n) +O(n) = O(n).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 88

Measuring Complexity Analyzing Algorithms

Analyzing Complexity

Another decider for A. This decider is a two-tape deterministic Turing
machine.

Let M3 = “On input string w :

1. Scan across tape 1, and reject if a 0 is found to the right of a 1.
O(n)

2. Scan across the 0s on tape 1, until the first 1, copying the 0s onto
tape 2. O(n)

3. Scan across the 1s on tape 1, until the end of input. For each 1
read on tape 1, cross of a 0 on tape 2. If all 0s are crossed off
before all the 1s are read, reject. O(n)

4. If all the 0s have been crossed off, accept; otherwise, reject.” O(n)

Total running time: O(n) +O(n) +O(n) +O(n) = O(n).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 12 / 88

Measuring Complexity Analyzing Algorithms

Complexity Class

Because the complexity of M3 is O(n), we can now say that
A ∈ TIME(n).

Can we still say A ∈ TIME(n2)?

Yes

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 13 / 88

Measuring Complexity Analyzing Algorithms

Complexity Class

Because the complexity of M3 is O(n), we can now say that
A ∈ TIME(n).

Can we still say A ∈ TIME(n2)? Yes

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 13 / 88

Measuring Complexity Complexity Relationships Among Models

Theorem 7.8

Let t(n) be a function, where t(n) ≥ n. Then every t(n) time
multi-tape Turing machine has an equivalent O(t2(n)) time single-tape
Turing machine.

Proof Idea: Recall the single-tape Turing machine that simulates a
multi-tape Turing machine from Theorem 3.13. Each step on the
multi-tape machine can take at most O(t(n)) steps in the single-tape
simulator, producing the total run time of O(t2(n)).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 14 / 88

Measuring Complexity Complexity Relationships Among Models

Theorem 7.8

Let t(n) be a function, where t(n) ≥ n. Then every t(n) time
multi-tape Turing machine has an equivalent O(t2(n)) time single-tape
Turing machine.

Proof Idea: Recall the single-tape Turing machine that simulates a
multi-tape Turing machine from Theorem 3.13. Each step on the
multi-tape machine can take at most O(t(n)) steps in the single-tape
simulator, producing the total run time of O(t2(n)).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 14 / 88

Measuring Complexity Complexity Relationships Among Models

Definition 7.9

Let N be a nondeterministic Turing machine that is a decider. The
running time of N is the function f : N→ N, where f (n) is the
maximum number of steps that N uses on any branch of its
computation on any input of length n.

This deserves a good diagram.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 15 / 88

Measuring Complexity Complexity Relationships Among Models

Definition 7.9

Let N be a nondeterministic Turing machine that is a decider. The
running time of N is the function f : N→ N, where f (n) is the
maximum number of steps that N uses on any branch of its
computation on any input of length n.

This deserves a good diagram.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 15 / 88

Measuring Complexity Complexity Relationships Among Models

Theorem 7.11

Let t(n) be a function, where t(n) ≥ n. Then every t(n) time
nondeterministic single-tape Turing machine has an equivalent
2O(t(n)) time deterministic single-tape Turing machine.

Proof Idea: Recall the deterministic Turing machine that simulates a
nondeterministic Turing machine from Theorem 3.16. The
nondeterministic computation tree has height of t(n) and at most
bO(t(n)) leaves, where b is the branching factor. The simulation does
breadth first search of this tree. This has run time of O(bO(t(n))), which
is 2O(t(n)).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 16 / 88

Measuring Complexity Complexity Relationships Among Models

Theorem 7.11

Let t(n) be a function, where t(n) ≥ n. Then every t(n) time
nondeterministic single-tape Turing machine has an equivalent
2O(t(n)) time deterministic single-tape Turing machine.

Proof Idea: Recall the deterministic Turing machine that simulates a
nondeterministic Turing machine from Theorem 3.16. The
nondeterministic computation tree has height of t(n) and at most
bO(t(n)) leaves, where b is the branching factor. The simulation does
breadth first search of this tree. This has run time of O(bO(t(n))), which
is 2O(t(n)).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 16 / 88

Measuring Complexity Complexity Relationships Among Models

Computational Models

In computability theory: the computational model does not matter.

In complexity theory: the computational model does matter.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 17 / 88

Measuring Complexity Complexity Relationships Among Models

Computational Models

In computability theory: the computational model does not matter.

In complexity theory: the computational model does matter.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 17 / 88

Measuring Complexity Summary

Important Results

▶ Big-O
▶ Time Complexity Classes: TIME(t(n))
▶ Theorem 7.8 t(n) multi-tape Turing machines have equivalent

O(t2(n)) single-tape Turing machines.
▶ Theorem 7.11 t(n) non-deterministic Turing machines have

equivalent 2O(t(n)) deterministic single-tape Turing machines.
▶ Polynomial time, t(n) = O(nk), is “easy”.
▶ Exponential time, t(n) = O(kn), is “hard”.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 18 / 88

The Class P Polynomial Time

The Class P

Reading: Sipser §7.2.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 19 / 88

The Class P Polynomial Time

Definition 7.12

P is the class of languages that are decidable in polynomial time on a
deterministic single-tape Turing machine. In other words,

P =
⋃
k

TIME(nk).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 20 / 88

The Class P Example Problems in P

Graphs

A graph is a collection of vertices (or nodes) and edges. With each
edge connecting a pair of nodes.

In directed graphs, edges are directional, and represented as an
ordered pair (a, b). In undirected graphs, edges are bi-directional, and
represented as an unordered pair {a, b}.

When analyzing the time complexity of graph algorithms, we often use
the number of vertices as the size of the graph. If we want to be more
detailed, we account for the number of edges as well.

G = (V ,E), where V is the set of vertices and E is the set of edges.
In a fully connected graph, |E | = |V |2. In general, |E | ≤ |V |2.
|G | = O(|V |+ |E |) = O(|V |2).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 21 / 88

The Class P Example Problems in P

PATH

A graph problem:

PATH = {⟨G , s, t⟩|G is a directed graph that has a directed path
from node s to node t}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 22 / 88

The Class P Example Problems in P

Theorem 7.14

PATH ∈ P

How could we prove this?

1. Provide a decider for PATH, MPATH.
2. Analyze the time complexity of MPATH.
3. If MPATH’s time complexity is O(nk) and k ∈ N, then

PATH ∈ TIME(nk) ∈ P.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 88

The Class P Example Problems in P

Theorem 7.14

PATH ∈ P

How could we prove this?

1. Provide a decider for PATH, MPATH.
2. Analyze the time complexity of MPATH.
3. If MPATH’s time complexity is O(nk) and k ∈ N, then

PATH ∈ TIME(nk) ∈ P.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 23 / 88

The Class P Example Problems in P

PATH

Let MPATH = “On input ⟨G , s, t⟩:

1. Place a mark on node s.

2. Repeat the following until no additional nodes are marked:
3. Scan all edges of G . If an edge (a, b) is found going from a

marked node a to an unmarked node b, mark node b.
4. If t is marked, accept. Otherwise, reject.”

The loop will terminate after at most |V ||E | ≤ |V |3 edge checks.
MPATH halts. If there is a path from s to t in G , MPATH will accept.
Otherwise, MPATH will reject. MPATH is a decider for PATH.

What is the time complexity class of PATH? TIME(|V ||E |) ∈ P

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 24 / 88

The Class P Example Problems in P

PATH

Let MPATH = “On input ⟨G , s, t⟩:

1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all edges of G . If an edge (a, b) is found going from a
marked node a to an unmarked node b, mark node b.

4. If t is marked, accept. Otherwise, reject.”

The loop will terminate after at most |V ||E | ≤ |V |3 edge checks.
MPATH halts. If there is a path from s to t in G , MPATH will accept.
Otherwise, MPATH will reject. MPATH is a decider for PATH.

What is the time complexity class of PATH? TIME(|V ||E |) ∈ P

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 24 / 88

The Class P Example Problems in P

PATH

Let MPATH = “On input ⟨G , s, t⟩:

1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:
3. Scan all edges of G . If an edge (a, b) is found going from a

marked node a to an unmarked node b, mark node b.

4. If t is marked, accept. Otherwise, reject.”

The loop will terminate after at most |V ||E | ≤ |V |3 edge checks.
MPATH halts. If there is a path from s to t in G , MPATH will accept.
Otherwise, MPATH will reject. MPATH is a decider for PATH.

What is the time complexity class of PATH? TIME(|V ||E |) ∈ P

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 24 / 88

The Class P Example Problems in P

PATH

Let MPATH = “On input ⟨G , s, t⟩:

1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:
3. Scan all edges of G . If an edge (a, b) is found going from a

marked node a to an unmarked node b, mark node b.
4. If t is marked, accept. Otherwise, reject.”

The loop will terminate after at most |V ||E | ≤ |V |3 edge checks.
MPATH halts. If there is a path from s to t in G , MPATH will accept.
Otherwise, MPATH will reject. MPATH is a decider for PATH.

What is the time complexity class of PATH? TIME(|V ||E |) ∈ P

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 24 / 88

The Class P Example Problems in P

PATH

Let MPATH = “On input ⟨G , s, t⟩:

1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:
3. Scan all edges of G . If an edge (a, b) is found going from a

marked node a to an unmarked node b, mark node b.
4. If t is marked, accept. Otherwise, reject.”

The loop will terminate after at most |V ||E | ≤ |V |3 edge checks.
MPATH halts. If there is a path from s to t in G , MPATH will accept.
Otherwise, MPATH will reject. MPATH is a decider for PATH.

What is the time complexity class of PATH?

TIME(|V ||E |) ∈ P

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 24 / 88

The Class P Example Problems in P

PATH

Let MPATH = “On input ⟨G , s, t⟩:

1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:
3. Scan all edges of G . If an edge (a, b) is found going from a

marked node a to an unmarked node b, mark node b.
4. If t is marked, accept. Otherwise, reject.”

The loop will terminate after at most |V ||E | ≤ |V |3 edge checks.
MPATH halts. If there is a path from s to t in G , MPATH will accept.
Otherwise, MPATH will reject. MPATH is a decider for PATH.

What is the time complexity class of PATH? TIME(|V ||E |) ∈ P

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 24 / 88

The Class P Example Problems in P

Encoding of Numbers

When a number is an input, what is the size of the input?

It depends on the representation used: ⟨n⟩.

Unary notation for encoding uses n 1’s to represent n. (e.g.
⟨5⟩ = 11111). |n| = n.

Base k notation, with k ≥ 2, is much more compact. (e.g. base 2,
⟨5⟩ = 101). |n| = ⌈logk (n)⌉. This is much better.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 25 / 88

The Class P Example Problems in P

Encoding of Numbers

When a number is an input, what is the size of the input?

It depends on the representation used: ⟨n⟩.

Unary notation for encoding uses n 1’s to represent n. (e.g.
⟨5⟩ = 11111). |n| = n.

Base k notation, with k ≥ 2, is much more compact. (e.g. base 2,
⟨5⟩ = 101). |n| = ⌈logk (n)⌉. This is much better.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 25 / 88

The Class P Example Problems in P

Encoding of Numbers

When a number is an input, what is the size of the input?

It depends on the representation used: ⟨n⟩.

Unary notation for encoding uses n 1’s to represent n. (e.g.
⟨5⟩ = 11111). |n| = n.

Base k notation, with k ≥ 2, is much more compact. (e.g. base 2,
⟨5⟩ = 101). |n| = ⌈logk (n)⌉. This is much better.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 25 / 88

The Class P Example Problems in P

Encoding of Numbers

When a number is an input, what is the size of the input?

It depends on the representation used: ⟨n⟩.

Unary notation for encoding uses n 1’s to represent n. (e.g.
⟨5⟩ = 11111). |n| = n.

Base k notation, with k ≥ 2, is much more compact. (e.g. base 2,
⟨5⟩ = 101). |n| = ⌈logk (n)⌉. This is much better.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 25 / 88

The Class P Example Problems in P

RELPRIME

Definition: Two numbers are relatively prime if 1 is the largest integer
that evenly divides them both. (e.g. 10 and 21 are not prime, but are
relatively prime.)

Another language definition:

RELPRIME = {⟨x , y⟩|x and y are relatively prime }.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 26 / 88

The Class P Example Problems in P

Theorem 7.15

RELPRIME ∈ P

How could we prove this?

1. Provide a decider for RELPRIME, MRELPRIME.
2. Analyze the time complexity of MRELPRIME.
3. If MRELPRIME’s time complexity is O(nk) and k ∈ N, then

RELPRIME ∈ TIME(nk) ∈ P.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 88

The Class P Example Problems in P

Theorem 7.15

RELPRIME ∈ P

How could we prove this?

1. Provide a decider for RELPRIME, MRELPRIME.
2. Analyze the time complexity of MRELPRIME.
3. If MRELPRIME’s time complexity is O(nk) and k ∈ N, then

RELPRIME ∈ TIME(nk) ∈ P.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 27 / 88

The Class P Example Problems in P

RELPRIME

The Euclidean algorithm computes the greatest common divisor of two
natural numbers:

Let E = “On input ⟨x , y⟩:

1. Repeat until y = 0:
2. Assign x ← x mod y .
3. Exchange x and y .
4. Output x .”

We accept its correctness from numerous textbooks. The loop in E
causes x to lose at least 1 bit, before swapping it with y . Every two
iterations the loop will cause both of the numbers to lose at least one
bit. The loop in E will terminate after at most 2 min(log2(x), log2(y))
repetitions.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 88

The Class P Example Problems in P

RELPRIME

The Euclidean algorithm computes the greatest common divisor of two
natural numbers:

Let E = “On input ⟨x , y⟩:

1. Repeat until y = 0:
2. Assign x ← x mod y .
3. Exchange x and y .
4. Output x .”

We accept its correctness from numerous textbooks. The loop in E
causes x to lose at least 1 bit, before swapping it with y . Every two
iterations the loop will cause both of the numbers to lose at least one
bit. The loop in E will terminate after at most 2 min(log2(x), log2(y))
repetitions.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 28 / 88

The Class P Example Problems in P

RELPRIME

Let MRELPRIME = “On input ⟨x , y⟩:

1. Run E on x and y .
2. If the result is 1, accept. Otherwise, reject.”

MRELPRIME halts, because E halts. MRELPRIME is a decider for
RELPRIME.

What is the size of the input? n = ⌈log2(x)⌉+ ⌈log2(y)⌉

What is the time complexity class of RELPRIME? TIME(n) ∈ P

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 29 / 88

The Class P Example Problems in P

RELPRIME

Let MRELPRIME = “On input ⟨x , y⟩:

1. Run E on x and y .
2. If the result is 1, accept. Otherwise, reject.”

MRELPRIME halts, because E halts. MRELPRIME is a decider for
RELPRIME.

What is the size of the input? n = ⌈log2(x)⌉+ ⌈log2(y)⌉

What is the time complexity class of RELPRIME? TIME(n) ∈ P

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 29 / 88

The Class P Example Problems in P

RELPRIME

Let MRELPRIME = “On input ⟨x , y⟩:

1. Run E on x and y .
2. If the result is 1, accept. Otherwise, reject.”

MRELPRIME halts, because E halts. MRELPRIME is a decider for
RELPRIME.

What is the size of the input?

n = ⌈log2(x)⌉+ ⌈log2(y)⌉

What is the time complexity class of RELPRIME? TIME(n) ∈ P

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 29 / 88

The Class P Example Problems in P

RELPRIME

Let MRELPRIME = “On input ⟨x , y⟩:

1. Run E on x and y .
2. If the result is 1, accept. Otherwise, reject.”

MRELPRIME halts, because E halts. MRELPRIME is a decider for
RELPRIME.

What is the size of the input? n = ⌈log2(x)⌉+ ⌈log2(y)⌉

What is the time complexity class of RELPRIME?

TIME(n) ∈ P

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 29 / 88

The Class P Example Problems in P

RELPRIME

Let MRELPRIME = “On input ⟨x , y⟩:

1. Run E on x and y .
2. If the result is 1, accept. Otherwise, reject.”

MRELPRIME halts, because E halts. MRELPRIME is a decider for
RELPRIME.

What is the size of the input? n = ⌈log2(x)⌉+ ⌈log2(y)⌉

What is the time complexity class of RELPRIME? TIME(n) ∈ P

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 29 / 88

The Class NP

The Class NP

Reading: Sipser §7.3.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 30 / 88

The Class NP Nondeterministic Polynomial Time

Hamiltonian Paths

A Hamiltonian Path is a directed path in a graph that visits each node
exactly once.

s

a

b

c

d

e

f

t

What is a Hamiltonian Path in this graph, starting at s and ending at t?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 31 / 88

The Class NP Nondeterministic Polynomial Time

Hamiltonian Paths

A Hamiltonian Path is a directed path in a graph that visits each node
exactly once.

s

a

b

c

d

e

f

t

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 32 / 88

The Class NP Nondeterministic Polynomial Time

HAMPATH

Another graph problem:

HAMPATH = {⟨G , s, t⟩|G is a directed graph that has a
Hamiltonian path from node s to node t}

Is HAMPATH in P?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 33 / 88

The Class NP Nondeterministic Polynomial Time

HAMPATH

Another graph problem:

HAMPATH = {⟨G , s, t⟩|G is a directed graph that has a
Hamiltonian path from node s to node t}

Is HAMPATH in P?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 33 / 88

The Class NP Nondeterministic Polynomial Time

HAMPATH

We don’t know if HAMPATH is in P. We can prove a weaker property
of HAMPATH:

Given a path c, described as an ordered list of nodes, in G , we can
verify if it is a Hamiltonian path in polynomial time. We provide a
verifier that completes in polynomial time.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 34 / 88

The Class NP Nondeterministic Polynomial Time

HAMPATH

We don’t know if HAMPATH is in P. We can prove a weaker property
of HAMPATH:

Given a path c, described as an ordered list of nodes, in G , we can
verify if it is a Hamiltonian path in polynomial time. We provide a
verifier that completes in polynomial time.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 34 / 88

The Class NP Nondeterministic Polynomial Time

HAMPATH

Let VHAMPATH = “On input ⟨⟨G , s, t⟩, c⟩:

1. Mark all nodes v in G as unvisited.
2. Let u be the first node in c.
3. If u ̸= s, then reject.
4. Mark u as visited.
5. For each v in c, starting with the second node:
6. If (u, v) ̸∈ E , then reject.
7. If v is visited, then reject.
8. Mark v as visited.
9. u = v .

10. If u ̸= t , then reject.
11. If any node is not visited, then reject.
12. accept.
Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 35 / 88

The Class NP Nondeterministic Polynomial Time

COMPOSITES

Another number problem:

COMPOSITES = {⟨x ⟩|x = pq , for integers p, q > 1}

Is COMPOSITES in P?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 36 / 88

The Class NP Nondeterministic Polynomial Time

COMPOSITES

Another number problem:

COMPOSITES = {⟨x ⟩|x = pq , for integers p, q > 1}

Is COMPOSITES in P?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 36 / 88

The Class NP Nondeterministic Polynomial Time

COMPOSITES

In recent years, a proof that COMPOSITES is in P has been given.
We will not prove that here. Instead, we will prove the weaker property
that COMPOSITES is polynomially verifiable.

Given c, in the form of two numbers p, q , we can verify if their product
is x , in polynomial time. We provide a verifier that completes in
polynomial time.

Let VCOMPOSITES = “On input ⟨⟨x ⟩, c⟩:

1. Let p, q = c.
2. Multiply p and q .
3. If the product is not x , then reject.
4. accept.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 37 / 88

The Class NP Nondeterministic Polynomial Time

COMPOSITES

In recent years, a proof that COMPOSITES is in P has been given.
We will not prove that here. Instead, we will prove the weaker property
that COMPOSITES is polynomially verifiable.

Given c, in the form of two numbers p, q , we can verify if their product
is x , in polynomial time. We provide a verifier that completes in
polynomial time.

Let VCOMPOSITES = “On input ⟨⟨x ⟩, c⟩:

1. Let p, q = c.
2. Multiply p and q .
3. If the product is not x , then reject.
4. accept.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 37 / 88

The Class NP Nondeterministic Polynomial Time

COMPOSITES

In recent years, a proof that COMPOSITES is in P has been given.
We will not prove that here. Instead, we will prove the weaker property
that COMPOSITES is polynomially verifiable.

Given c, in the form of two numbers p, q , we can verify if their product
is x , in polynomial time. We provide a verifier that completes in
polynomial time.

Let VCOMPOSITES = “On input ⟨⟨x ⟩, c⟩:

1. Let p, q = c.
2. Multiply p and q .
3. If the product is not x , then reject.
4. accept.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 37 / 88

The Class NP Nondeterministic Polynomial Time

Definition 7.18

A verifier for a language A is an algorithm V, where

A = {w |V accepts ⟨w , c⟩ for some string c}.

We measure the time of a verifier only in terms of the length of w , so a
polynomial time verifier runs in polynomial time in the length of w .
Language A is polynomially verifiable if it has a polynomial time
verifier.

c is called the certificate, or proof, of membership.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 38 / 88

The Class NP Nondeterministic Polynomial Time

Definition 7.19

NP is the class of languages that have polynomial time verifiers.

What does NP stand for? nondeterministic polynomial time.

Why is P ⊆ NP?

If a problem is solvable in polynomial time, then the verifier could solve
the problem, and check if the certificate matches the solution, all in
polynomial time.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 39 / 88

The Class NP Nondeterministic Polynomial Time

Definition 7.19

NP is the class of languages that have polynomial time verifiers.

What does NP stand for?

nondeterministic polynomial time.

Why is P ⊆ NP?

If a problem is solvable in polynomial time, then the verifier could solve
the problem, and check if the certificate matches the solution, all in
polynomial time.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 39 / 88

The Class NP Nondeterministic Polynomial Time

Definition 7.19

NP is the class of languages that have polynomial time verifiers.

What does NP stand for? nondeterministic polynomial time.

Why is P ⊆ NP?

If a problem is solvable in polynomial time, then the verifier could solve
the problem, and check if the certificate matches the solution, all in
polynomial time.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 39 / 88

The Class NP Nondeterministic Polynomial Time

Definition 7.19

NP is the class of languages that have polynomial time verifiers.

What does NP stand for? nondeterministic polynomial time.

Why is P ⊆ NP?

If a problem is solvable in polynomial time, then the verifier could solve
the problem, and check if the certificate matches the solution, all in
polynomial time.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 39 / 88

The Class NP Nondeterministic Polynomial Time

Definition 7.19

NP is the class of languages that have polynomial time verifiers.

What does NP stand for? nondeterministic polynomial time.

Why is P ⊆ NP?

If a problem is solvable in polynomial time, then the verifier could solve
the problem, and check if the certificate matches the solution, all in
polynomial time.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 39 / 88

The Class NP Nondeterministic Polynomial Time

Theorem 7.20

A language is in NP if and only if it is decided by some
nondeterministic polynomial time Turing machine.

Proof Idea: Convert a polynomial time verifier to an equivalent
polynomial time Nondeterministic Turing Machine, and vice versa.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 40 / 88

The Class NP Nondeterministic Polynomial Time

Theorem 7.20

A language is in NP if and only if it is decided by some
nondeterministic polynomial time Turing machine.

Proof Idea: Convert a polynomial time verifier to an equivalent
polynomial time Nondeterministic Turing Machine, and vice versa.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 40 / 88

The Class NP Nondeterministic Polynomial Time

Theorem 7.20

Proof (part1): Let A ∈ NP, with V a polynomial time verifier for A,
which exists because A is in NP. V runs in time O(nk).

Let N = “On input w of length n:

1. Non-deterministically select string c of length at most nk .
2. Run V on input ⟨w , c⟩.
3. If V accepts, accept; otherwise, reject.”

If A is in NP, then N is a polynomial time Nondeterministic decider.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 41 / 88

The Class NP Nondeterministic Polynomial Time

Theorem 7.20

Proof (part2): Assume that A is decided by a polynomial time
non-deterministic Turing machine, N . Construct the following verifier,
V .

Let V = “On input ⟨w , c⟩ where w and c are strings:

1. Simulate N on input w , treating each symbol of c as a description
of the non-deterministic choice to make at each step.

2. If this branch of N ’s computation accepts, accept; otherwise,
reject.”

If A is in decided by a polynomial time Nondeterministic decider then
V is a verifier for A.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 42 / 88

The Class NP Nondeterministic Polynomial Time

Definition 7.21

NTIME(t(n)) = {L|L is a language decided by a O(t(n))

time nondeterministic Turing machine }.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 43 / 88

The Class NP Nondeterministic Polynomial Time

Corollary 7.22

NP =
⋃
k

NTIME(nk).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 44 / 88

The Class NP Example Problems in NP

Cliques in Graphs

A clique in an undirected graph is a subgraph, where all pairs of
graphs are connected by an edge.

a

b

c

d

e

f

g

What nodes are in the 5-clique?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 45 / 88

The Class NP Example Problems in NP

Cliques in Graphs

A clique in an undirected graph is a subgraph, where all pairs of
graphs are connected by an edge.

a

b

c

d

e

f

g

What nodes are in the 5-clique? {c, d , e, f , g}

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 46 / 88

The Class NP Example Problems in NP

CLIQUE

Another graph problem:

CLIQUE = {⟨G , k⟩|G is an undirected graph that has a
k -clique}

Is CLIQUE in NP?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 47 / 88

The Class NP Example Problems in NP

CLIQUE

Another graph problem:

CLIQUE = {⟨G , k⟩|G is an undirected graph that has a
k -clique}

Is CLIQUE in NP?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 47 / 88

The Class NP Example Problems in NP

Theorem 7.24

CLIQUE ∈ NP

Proof Idea: A certificate for CLIQUE is a list of nodes in a clique.

Proof:

Let V = “On input ⟨⟨G , k⟩, c⟩:

1. Test whether |c| = k .
2. Test whether all nodes in c are in G .
3. Test whether all pairs of nodes in c have connecting edges in G .
4. If all tests pass, accept; otherwise reject.”

V runs in time polynomial in the size of G , and decides if c is a
k -clique of G .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 48 / 88

The Class NP Example Problems in NP

Theorem 7.24

CLIQUE ∈ NP

Proof Idea: A certificate for CLIQUE is a list of nodes in a clique.

Proof:

Let V = “On input ⟨⟨G , k⟩, c⟩:

1. Test whether |c| = k .
2. Test whether all nodes in c are in G .
3. Test whether all pairs of nodes in c have connecting edges in G .
4. If all tests pass, accept; otherwise reject.”

V runs in time polynomial in the size of G , and decides if c is a
k -clique of G .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 48 / 88

The Class NP Example Problems in NP

Theorem 7.24

CLIQUE ∈ NP

Proof Idea: A certificate for CLIQUE is a list of nodes in a clique.

Proof:

Let V = “On input ⟨⟨G , k⟩, c⟩:

1. Test whether |c| = k .
2. Test whether all nodes in c are in G .
3. Test whether all pairs of nodes in c have connecting edges in G .
4. If all tests pass, accept; otherwise reject.”

V runs in time polynomial in the size of G , and decides if c is a
k -clique of G .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 48 / 88

The Class NP Example Problems in NP

SUBSET-SUM

Consider this numeric problem:

Given: A set S of k numbers x1, ..., xk and a number t .

Find: A subset y1, ..., ym of S such that
∑

i yi = t .

As a language:

SUBSET-SUM = {⟨S , t⟩|S = {x1, ..., xk} and for some

{y1, ..., ym} ⊆ {x1, ..., xk} we have
∑
i

yi = t}

Is SUBSET-SUM in NP?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 49 / 88

The Class NP Example Problems in NP

SUBSET-SUM

Consider this numeric problem:

Given: A set S of k numbers x1, ..., xk and a number t .

Find: A subset y1, ..., ym of S such that
∑

i yi = t .

As a language:

SUBSET-SUM = {⟨S , t⟩|S = {x1, ..., xk} and for some

{y1, ..., ym} ⊆ {x1, ..., xk} we have
∑
i

yi = t}

Is SUBSET-SUM in NP?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 49 / 88

The Class NP Example Problems in NP

SUBSET-SUM

Consider this numeric problem:

Given: A set S of k numbers x1, ..., xk and a number t .

Find: A subset y1, ..., ym of S such that
∑

i yi = t .

As a language:

SUBSET-SUM = {⟨S , t⟩|S = {x1, ..., xk} and for some

{y1, ..., ym} ⊆ {x1, ..., xk} we have
∑
i

yi = t}

Is SUBSET-SUM in NP?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 49 / 88

The Class NP Example Problems in NP

Theorem 7.25

SUBSET-SUM ∈ NP

Proof Idea: A certificate for SUBSET-SUM is a set of numbers.

Proof:

Let V = “On input ⟨⟨S , t⟩, c⟩:

1. Test whether the numbers in c add up to t .
2. Test whether all numbers in c are in S .
3. If all tests pass, accept; otherwise reject.”

V runs in time polynomial in the size of S , and decides if c is a subset
of S that sums to t .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 50 / 88

The Class NP Example Problems in NP

Theorem 7.25

SUBSET-SUM ∈ NP

Proof Idea: A certificate for SUBSET-SUM is a set of numbers.

Proof:

Let V = “On input ⟨⟨S , t⟩, c⟩:

1. Test whether the numbers in c add up to t .
2. Test whether all numbers in c are in S .
3. If all tests pass, accept; otherwise reject.”

V runs in time polynomial in the size of S , and decides if c is a subset
of S that sums to t .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 50 / 88

The Class NP Example Problems in NP

Theorem 7.25

SUBSET-SUM ∈ NP

Proof Idea: A certificate for SUBSET-SUM is a set of numbers.

Proof:

Let V = “On input ⟨⟨S , t⟩, c⟩:

1. Test whether the numbers in c add up to t .
2. Test whether all numbers in c are in S .
3. If all tests pass, accept; otherwise reject.”

V runs in time polynomial in the size of S , and decides if c is a subset
of S that sums to t .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 50 / 88

The Class NP P, NP, CONP

CONP

Are these languages in NP?

▶ HAMPATH
▶ CLIQUE
▶ SUBSET-SUM

It’s not obvious. Verifying something is not present appears to be more
difficult than verifying that it is present.

Let CONP be the complexity class of languages that are complements
of languages in NP.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 51 / 88

The Class NP P, NP, CONP

CONP

Are these languages in NP?

▶ HAMPATH
▶ CLIQUE
▶ SUBSET-SUM

It’s not obvious. Verifying something is not present appears to be more
difficult than verifying that it is present.

Let CONP be the complexity class of languages that are complements
of languages in NP.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 51 / 88

The Class NP P, NP, CONP

CONP

Are these languages in NP?

▶ HAMPATH
▶ CLIQUE
▶ SUBSET-SUM

It’s not obvious. Verifying something is not present appears to be more
difficult than verifying that it is present.

Let CONP be the complexity class of languages that are complements
of languages in NP.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 51 / 88

The Class NP P, NP, CONP

P vs NP

P is the class of languages for which membership can be decided
quickly.

NP is the class of languages for which membership can be verified
quickly.

The big question: P = NP or P ⊂ NP?

The answer is not known.

We can prove:

NP ⊆ EXPTIME =
⋃
k

TIME(2n
k
).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 52 / 88

The Class NP P, NP, CONP

P vs NP

P is the class of languages for which membership can be decided
quickly.

NP is the class of languages for which membership can be verified
quickly.

The big question: P = NP or P ⊂ NP?

The answer is not known.

We can prove:

NP ⊆ EXPTIME =
⋃
k

TIME(2n
k
).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 52 / 88

The Class NP P, NP, CONP

P vs NP

P is the class of languages for which membership can be decided
quickly.

NP is the class of languages for which membership can be verified
quickly.

The big question: P = NP or P ⊂ NP?

The answer is not known.

We can prove:

NP ⊆ EXPTIME =
⋃
k

TIME(2n
k
).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 52 / 88

The Class NP P, NP, CONP

P vs NP

P is the class of languages for which membership can be decided
quickly.

NP is the class of languages for which membership can be verified
quickly.

The big question: P = NP or P ⊂ NP?

The answer is not known.

We can prove:

NP ⊆ EXPTIME =
⋃
k

TIME(2n
k
).

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 52 / 88

NP-Completeness

NP-Completeness

Reading: Sipser §7.4.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 53 / 88

NP-Completeness Polynomial Time Reducibility

Definition 7.28

A function f : Σ∗ → Σ∗ is a polynomial time computable function if
some polynomial time Turing machine M exists that halts with just
f (w) on its tape, when started on any input w .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 54 / 88

NP-Completeness Polynomial Time Reducibility

Definition 7.29

Language A is polynomial time mapping reducible, or polynomial
time reducible, to language B, written A ≤P B, if a polynomial time
computable function f : Σ∗ → Σ∗ exists, where for every w ,

w ∈ A ⇔ f (w) ∈ B.

The function f is called the polynomial time reduction of A to B.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 55 / 88

NP-Completeness Polynomial Time Reducibility

Theorem 7.31

If A ≤P B and B ∈ P, then A ∈ P.

Proof: Let M be the polynomial time decider for B and f be the
polynomial time reduction from A to B.

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w) and output whatever M outputs.”

Is w ∈ A ⇔ f (w) ∈ B?

Is N polynomial time?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 56 / 88

NP-Completeness Polynomial Time Reducibility

Theorem 7.31

If A ≤P B and B ∈ P, then A ∈ P.

Proof: Let M be the polynomial time decider for B and f be the
polynomial time reduction from A to B.

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w) and output whatever M outputs.”

Is w ∈ A ⇔ f (w) ∈ B?

Is N polynomial time?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 56 / 88

NP-Completeness Polynomial Time Reducibility

Theorem 7.31

If A ≤P B and B ∈ P, then A ∈ P.

Proof: Let M be the polynomial time decider for B and f be the
polynomial time reduction from A to B.

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w) and output whatever M outputs.”

Is w ∈ A ⇔ f (w) ∈ B?

Is N polynomial time?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 56 / 88

NP-Completeness Polynomial Time Reducibility

Theorem 7.31

If A ≤P B and B ∈ P, then A ∈ P.

Proof: Let M be the polynomial time decider for B and f be the
polynomial time reduction from A to B.

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w) and output whatever M outputs.”

Is w ∈ A ⇔ f (w) ∈ B?

Is N polynomial time?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 56 / 88

NP-Completeness Polynomial Time Reducibility

Theorem 7.31

If A ≤P B and B ∈ P, then A ∈ P.

Proof: Let M be the polynomial time decider for B and f be the
polynomial time reduction from A to B.

Let N = “On input w :

1. Compute f (w).
2. Run M on input f (w) and output whatever M outputs.”

Is w ∈ A ⇔ f (w) ∈ B?

Is N polynomial time?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 56 / 88

NP-Completeness Polynomial Time Reducibility

Reduction proof outline

A ≤P B

▶ Describe a generic instance of A.
▶ Describe a generic instance of B.
▶ Provide the polynomial time reduction function.
▶ Prove the function is polynomial time computable.
▶ Prove that any instance of A can be reduced to some instance of

B.
▶ Prove that any non-instance of A can be reduced to some

non-instance of B. Alternatively: Prove that any reachable
instance of B can be only be reduced from some instance of A.

▶ Conclude that the conditions of polynomial time mapping
reduction have been met.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 57 / 88

NP-Completeness Polynomial Time Reducibility

3SAT

Given: Logic variables x1, x2, ..., xn , disjunctive clauses c1, c2, ..., cm
with 3 literals per clause, and ϕ the conjunction of all clauses. This is a
“3 CNF-formula”.

Find: Whether there is an assignment of truth values for all variables
that satisfies ϕ.

Sample: ϕ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)
Satisfying assignment: x1 = 0, x2 = 1.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 58 / 88

NP-Completeness Polynomial Time Reducibility

3SAT

A satisfiability problem:

3SAT = {⟨ϕ⟩|ϕ is a satisfiable 3 CNF-formula }

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 59 / 88

NP-Completeness Polynomial Time Reducibility

Theorem 7.32

3SAT is polynomial time reducibile to CLIQUE.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 60 / 88

NP-Completeness Polynomial Time Reducibility

3SAT

3SAT = {⟨ϕ⟩|ϕ is a satsifiable 3 cnf-formula}.

A 3 cnf-formula is a conjunctive normal form formula with 3 literals per
clause.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 61 / 88

NP-Completeness Polynomial Time Reducibility

CLIQUE

CLIQUE = {⟨G , k⟩|G is an undirected graph with a k -clique}.

A clique in an undirected graph is a subgraph, wherein every two
nodes are connected by an edge. A k-clique is a clique that contains k
nodes.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 62 / 88

NP-Completeness Polynomial Time Reducibility

Example Polynomial Time Reduction

Reduction from 3SAT to CLIQUE.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 63 / 88

NP-Completeness Definition of NP-Completeness

Definition 7.34

A language B is NP-complete if it satisfies two conditions:

1. B is in NP, and
2. every A in NP is polynomial time reducible to B.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 64 / 88

NP-Completeness Definition of NP-Completeness

Definition 7.xx

A language B is NP-hard if all problems in NP are polynomial time
reducible to it, even though it may not be in NP itself.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 65 / 88

NP-Completeness Definition of NP-Completeness

Definition 7.yy (Alternate Form of NP-Completeness)

A language B is NP-complete if it satisfies two conditions:

1. B is in NP, and
2. B is NP-HARD.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 66 / 88

NP-Completeness Definition of NP-Completeness

Theorem 7.35

If B is NP-complete and B ∈ P, then P = NP.

Proof:

By definition 7.34, any problem in NP is polynomial time reducible to B.
For any A ∈ NP, let RAB be the reduction from A to B. Let MB be the
polynomial time decider for B, guaranteed to exist by definition 7.12.

Let MA = “On input wA, a possible member of A:

1. Run RAB on wA to compute wB.
2. Run MB on wB. If MB accepts, accept; otherwise reject.”

Both steps are polynomial time. This machine can be used to solve
any problem in NP in polynomial time. If B exists with the properties
above, then P = NP.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 67 / 88

NP-Completeness Definition of NP-Completeness

Theorem 7.35

If B is NP-complete and B ∈ P, then P = NP.

Proof:

By definition 7.34, any problem in NP is polynomial time reducible to B.
For any A ∈ NP, let RAB be the reduction from A to B. Let MB be the
polynomial time decider for B, guaranteed to exist by definition 7.12.

Let MA = “On input wA, a possible member of A:

1. Run RAB on wA to compute wB.
2. Run MB on wB. If MB accepts, accept; otherwise reject.”

Both steps are polynomial time. This machine can be used to solve
any problem in NP in polynomial time. If B exists with the properties
above, then P = NP.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 67 / 88

NP-Completeness Definition of NP-Completeness

Theorem 7.35

If B is NP-complete and B ∈ P, then P = NP.

Proof:

By definition 7.34, any problem in NP is polynomial time reducible to B.
For any A ∈ NP, let RAB be the reduction from A to B. Let MB be the
polynomial time decider for B, guaranteed to exist by definition 7.12.

Let MA = “On input wA, a possible member of A:

1. Run RAB on wA to compute wB.
2. Run MB on wB. If MB accepts, accept; otherwise reject.”

Both steps are polynomial time. This machine can be used to solve
any problem in NP in polynomial time. If B exists with the properties
above, then P = NP.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 67 / 88

NP-Completeness Definition of NP-Completeness

Theorem 7.35

If B is NP-complete and B ∈ P, then P = NP.

Proof:

By definition 7.34, any problem in NP is polynomial time reducible to B.
For any A ∈ NP, let RAB be the reduction from A to B. Let MB be the
polynomial time decider for B, guaranteed to exist by definition 7.12.

Let MA = “On input wA, a possible member of A:

1. Run RAB on wA to compute wB.
2. Run MB on wB. If MB accepts, accept; otherwise reject.”

Both steps are polynomial time. This machine can be used to solve
any problem in NP in polynomial time. If B exists with the properties
above, then P = NP.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 67 / 88

NP-Completeness Definition of NP-Completeness

Theorem 7.36

If B is NP-complete and B ≤P C for C in NP, then C is NP-complete.

Proof idea:

C is in NP, so we only need to prove it is also NP-HARD. By definition
7.34, all of NP polynomial time reduces to B. By the conditions above,
B ≤P C. By serial application, we can polynomial time reduce any
member of NP to C, making it NP-HARD.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 68 / 88

NP-Completeness Definition of NP-Completeness

Theorem 7.36

If B is NP-complete and B ≤P C for C in NP, then C is NP-complete.

Proof idea:

C is in NP, so we only need to prove it is also NP-HARD. By definition
7.34, all of NP polynomial time reduces to B. By the conditions above,
B ≤P C. By serial application, we can polynomial time reduce any
member of NP to C, making it NP-HARD.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 68 / 88

NP-Completeness Definition of NP-Completeness

NP-completeness Proof Process

To prove language B is NP-complete.

1. Prove B ∈ NP.
▶ Describe a certificate for B.
▶ Provide a polynomial time verifier for B. Must include arguments for

correctness and time complexity of verifier.
2. Prove B is NP-HARD.

▶ Select a known NP-COMPLETE language, C.
▶ Provide a polynomial time reduction from C to B.

▶ Instance descriptions for both C and B.
▶ Reduction process f (w).

▶ Prove reduction from C to B is polynomial.
▶ Prove w ∈ C ⇒ f (w) ∈ B.
▶ Prove w ̸∈ C ⇒ f (w) ̸∈ B or f (w) ∈ B ⇒ w ∈ C.
▶ Conclude B is NP-HARD.

3. Conclude B is NP-COMPLETE.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 69 / 88

NP-Completeness The Cook-Levin Theorem

Theorem 7.37

SAT is NP-complete.

Proof to come later.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 70 / 88

NP-Completeness The Cook-Levin Theorem

Theorem 7.37

SAT is NP-complete.

Proof to come later.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 70 / 88

NP-Completeness Additional NP-COMPLETE Problems

DOMINATING-SET

DOMINATING-SET = {⟨G , k⟩|G is an undirected graph that has a
k -node dominating set }.

A dominating set is a subset of nodes where every other node of G is
adjacent to at least one of those nodes.

What does a certificate for DOMINATING-SET look like?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 71 / 88

NP-Completeness Additional NP-COMPLETE Problems

DOMINATING-SET

DOMINATING-SET = {⟨G , k⟩|G is an undirected graph that has a
k -node dominating set }.

A dominating set is a subset of nodes where every other node of G is
adjacent to at least one of those nodes.

What does a certificate for DOMINATING-SET look like?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 71 / 88

NP-Complete Problems

NP-Complete Problems

Reading: Sipser §7.5.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 72 / 88

NP-Complete Problems VERTEX-COVER

VERTEX-COVER

VERTEX-COVER = {⟨G , k⟩|G is an undirected graph that has a
k -node vertex cover }.

A vertex cover is a subset of nodes where every edge of G touches
one of those nodes.

What does a certificate for VERTEX-COVER look like?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 73 / 88

NP-Complete Problems VERTEX-COVER

VERTEX-COVER

VERTEX-COVER = {⟨G , k⟩|G is an undirected graph that has a
k -node vertex cover }.

A vertex cover is a subset of nodes where every edge of G touches
one of those nodes.

What does a certificate for VERTEX-COVER look like?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 73 / 88

NP-Complete Problems VERTEX-COVER

Theorem 7.44

VERTEX-COVER is NP-complete.

Proof:

1. VERTEX-COVER is in NP.
How to prove? Provide a verifier.

2. VERTEX-COVER is NP-HARD.
How to prove? Reduction from 3SAT to VERTEX-COVER, using
clause and variable gadgets.
ϕ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 74 / 88

NP-Complete Problems VERTEX-COVER

Theorem 7.44

VERTEX-COVER is NP-complete.

Proof:

1. VERTEX-COVER is in NP.
How to prove? Provide a verifier.

2. VERTEX-COVER is NP-HARD.
How to prove? Reduction from 3SAT to VERTEX-COVER, using
clause and variable gadgets.
ϕ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 74 / 88

NP-Complete Problems VERTEX-COVER

Theorem 7.44

VERTEX-COVER is NP-complete.

Proof:

1. VERTEX-COVER is in NP.
How to prove?

Provide a verifier.
2. VERTEX-COVER is NP-HARD.

How to prove? Reduction from 3SAT to VERTEX-COVER, using
clause and variable gadgets.
ϕ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 74 / 88

NP-Complete Problems VERTEX-COVER

Theorem 7.44

VERTEX-COVER is NP-complete.

Proof:

1. VERTEX-COVER is in NP.
How to prove? Provide a verifier.

2. VERTEX-COVER is NP-HARD.
How to prove? Reduction from 3SAT to VERTEX-COVER, using
clause and variable gadgets.
ϕ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 74 / 88

NP-Complete Problems VERTEX-COVER

Theorem 7.44

VERTEX-COVER is NP-complete.

Proof:

1. VERTEX-COVER is in NP.
How to prove? Provide a verifier.

2. VERTEX-COVER is NP-HARD.
How to prove?

Reduction from 3SAT to VERTEX-COVER, using
clause and variable gadgets.
ϕ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 74 / 88

NP-Complete Problems VERTEX-COVER

Theorem 7.44

VERTEX-COVER is NP-complete.

Proof:

1. VERTEX-COVER is in NP.
How to prove? Provide a verifier.

2. VERTEX-COVER is NP-HARD.
How to prove? Reduction from 3SAT to VERTEX-COVER, using
clause and variable gadgets.

ϕ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 74 / 88

NP-Complete Problems VERTEX-COVER

Theorem 7.44

VERTEX-COVER is NP-complete.

Proof:

1. VERTEX-COVER is in NP.
How to prove? Provide a verifier.

2. VERTEX-COVER is NP-HARD.
How to prove? Reduction from 3SAT to VERTEX-COVER, using
clause and variable gadgets.
ϕ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 74 / 88

NP-Complete Problems HAMPATH

HAMPATH

HAMPATH = {⟨G , s, t⟩|G is a directed graph with a Hamiltonian path
from s to t }.

A Hamiltonian path is a directed path that goes through each node in
G exactly once.

What does a certificate for HAMPATH look like?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 75 / 88

NP-Complete Problems HAMPATH

HAMPATH

HAMPATH = {⟨G , s, t⟩|G is a directed graph with a Hamiltonian path
from s to t }.

A Hamiltonian path is a directed path that goes through each node in
G exactly once.

What does a certificate for HAMPATH look like?

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 75 / 88

NP-Complete Problems HAMPATH

Theorem 7.44

HAMPATH is NP-complete.

Proof:

1. HAMPATH is in NP.
How to prove? Provide a verifier.

2. HAMPATH is NP-HARD.
How to prove? Reduction from 3SAT to HAMPATH, using
diamond variable gadgets and clause nodes.
Diamond rows have 2 nodes per clause, with buffer node
between, connected to clause node left-to-right loop, if positive
literal in clause, right to left if negative literal in clause.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 76 / 88

NP-Complete Problems HAMPATH

Theorem 7.44

HAMPATH is NP-complete.

Proof:

1. HAMPATH is in NP.
How to prove? Provide a verifier.

2. HAMPATH is NP-HARD.
How to prove? Reduction from 3SAT to HAMPATH, using
diamond variable gadgets and clause nodes.
Diamond rows have 2 nodes per clause, with buffer node
between, connected to clause node left-to-right loop, if positive
literal in clause, right to left if negative literal in clause.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 76 / 88

NP-Complete Problems HAMPATH

Theorem 7.44

HAMPATH is NP-complete.

Proof:

1. HAMPATH is in NP.
How to prove?

Provide a verifier.
2. HAMPATH is NP-HARD.

How to prove? Reduction from 3SAT to HAMPATH, using
diamond variable gadgets and clause nodes.
Diamond rows have 2 nodes per clause, with buffer node
between, connected to clause node left-to-right loop, if positive
literal in clause, right to left if negative literal in clause.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 76 / 88

NP-Complete Problems HAMPATH

Theorem 7.44

HAMPATH is NP-complete.

Proof:

1. HAMPATH is in NP.
How to prove? Provide a verifier.

2. HAMPATH is NP-HARD.
How to prove? Reduction from 3SAT to HAMPATH, using
diamond variable gadgets and clause nodes.
Diamond rows have 2 nodes per clause, with buffer node
between, connected to clause node left-to-right loop, if positive
literal in clause, right to left if negative literal in clause.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 76 / 88

NP-Complete Problems HAMPATH

Theorem 7.44

HAMPATH is NP-complete.

Proof:

1. HAMPATH is in NP.
How to prove? Provide a verifier.

2. HAMPATH is NP-HARD.
How to prove?

Reduction from 3SAT to HAMPATH, using
diamond variable gadgets and clause nodes.
Diamond rows have 2 nodes per clause, with buffer node
between, connected to clause node left-to-right loop, if positive
literal in clause, right to left if negative literal in clause.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 76 / 88

NP-Complete Problems HAMPATH

Theorem 7.44

HAMPATH is NP-complete.

Proof:

1. HAMPATH is in NP.
How to prove? Provide a verifier.

2. HAMPATH is NP-HARD.
How to prove? Reduction from 3SAT to HAMPATH, using
diamond variable gadgets and clause nodes.

Diamond rows have 2 nodes per clause, with buffer node
between, connected to clause node left-to-right loop, if positive
literal in clause, right to left if negative literal in clause.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 76 / 88

NP-Complete Problems HAMPATH

Theorem 7.44

HAMPATH is NP-complete.

Proof:

1. HAMPATH is in NP.
How to prove? Provide a verifier.

2. HAMPATH is NP-HARD.
How to prove? Reduction from 3SAT to HAMPATH, using
diamond variable gadgets and clause nodes.
Diamond rows have 2 nodes per clause, with buffer node
between, connected to clause node left-to-right loop, if positive
literal in clause, right to left if negative literal in clause.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 76 / 88

SAT is NP-hard

SAT is NP-hard

Reading: Sipser Theorem 7.37.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 77 / 88

SAT is NP-hard

SAT Definition

SAT = {⟨ϕ⟩|ϕ is a satisfiable Boolean formula over variables
x1, x2, ..., xn}.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 78 / 88

SAT is NP-hard

A ∈ NP Definition

Let A ∈ NP be any language in NP. Let NA be a non-deterministic
Turing machine that decides A. In other words, on input w , NA will
accept if w ∈ A and reject if w ̸∈ A, in polynomial time nk .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 79 / 88

SAT is NP-hard

Reduction from A to SAT

A ≤p SAT

Let R = “On input w , ⟨NA⟩:

1. Construct ϕ from w and NA.
2. Output ⟨ϕ⟩.”

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 80 / 88

SAT is NP-hard

Functionality of Non-deterministic Turing Machines

▶ All branches process simultaneously.
▶ Each node in tree represented by a configuration.
▶ If machine is polynomial, tallest branch is at most O(nk) high.
▶ If machine is polynomial, largest configuration is at most O(nk)

long.
▶ If any branch reaches an accepting configuration, the machine

accepts.
▶ Path from initial configuration to accepting configuration is a list of

consistent configurations.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 81 / 88

SAT is NP-hard

Tableau of Configurations

1 2 3 4 . . . n + 2 n + 3 . . . nk − 1 nk

1 # q0 w1 w2 . . . wn ⊔ . . . ⊔ #

2 # #

3 # #

... window

nk # #

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 82 / 88

SAT is NP-hard

Tableau of Configurations

Properties of Tableau of Configurations

▶ Each row is a configuration of computation.
▶ Row 1 is the initial configuration.
▶ Row i + 1 is one of the configurations that follows row i , according

to the transition function.
▶ If any row contains qaccept , then the tableau is an accepting branch

of the machine.
▶ Each cell in the tableau contains exactly one symbol

s ∈ C = Q ∪ Γ ∪ {#}.
▶ If there is an accepting tableau for NA,w , then NA accepts w .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 83 / 88

SAT is NP-hard

Constructing ϕ

ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕaccept

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 84 / 88

SAT is NP-hard

ϕcell

Let xi ,j ,s for 1 ≤ i , j ≤ nk and s ∈ C be 1 if cell i , j of the tableau
contains s and 0 otherwise.

Each cell must contain a symbol:
∨
s∈C

xi ,j ,s

Each cell must not contain two symbols:
∧

s,t∈C ;s ̸=t

(xi ,j ,s ∨ xi ,j ,t)

All cells must contain exactly one symbol:

ϕcell =
∧

1≤i ,j≤nk

[(∨
s∈C

xi ,j ,s

)
∧

(∧
s,t∈C ;s ̸=t

(xi ,j ,s ∨ xi ,j ,t)

)]

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 85 / 88

SAT is NP-hard

ϕcell

Let xi ,j ,s for 1 ≤ i , j ≤ nk and s ∈ C be 1 if cell i , j of the tableau
contains s and 0 otherwise.

Each cell must contain a symbol:
∨
s∈C

xi ,j ,s

Each cell must not contain two symbols:
∧

s,t∈C ;s ̸=t

(xi ,j ,s ∨ xi ,j ,t)

All cells must contain exactly one symbol:

ϕcell =
∧

1≤i ,j≤nk

[(∨
s∈C

xi ,j ,s

)
∧

(∧
s,t∈C ;s ̸=t

(xi ,j ,s ∨ xi ,j ,t)

)]

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 85 / 88

SAT is NP-hard

ϕcell

Let xi ,j ,s for 1 ≤ i , j ≤ nk and s ∈ C be 1 if cell i , j of the tableau
contains s and 0 otherwise.

Each cell must contain a symbol:
∨
s∈C

xi ,j ,s

Each cell must not contain two symbols:
∧

s,t∈C ;s ̸=t

(xi ,j ,s ∨ xi ,j ,t)

All cells must contain exactly one symbol:

ϕcell =
∧

1≤i ,j≤nk

[(∨
s∈C

xi ,j ,s

)
∧

(∧
s,t∈C ;s ̸=t

(xi ,j ,s ∨ xi ,j ,t)

)]

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 85 / 88

SAT is NP-hard

ϕcell

Let xi ,j ,s for 1 ≤ i , j ≤ nk and s ∈ C be 1 if cell i , j of the tableau
contains s and 0 otherwise.

Each cell must contain a symbol:
∨
s∈C

xi ,j ,s

Each cell must not contain two symbols:
∧

s,t∈C ;s ̸=t

(xi ,j ,s ∨ xi ,j ,t)

All cells must contain exactly one symbol:

ϕcell =
∧

1≤i ,j≤nk

[(∨
s∈C

xi ,j ,s

)
∧

(∧
s,t∈C ;s ̸=t

(xi ,j ,s ∨ xi ,j ,t)

)]

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 85 / 88

SAT is NP-hard

ϕstart

We need to represent the first row of the tableau as a logic formula.

1 2 3 4 . . . n + 2 n + 3 . . . nk − 1 nk

q0 w1 w2 . . . wn ⊔ . . . ⊔

ϕstart = x1,1,# ∧ x1,2,q0
∧x1,3,w1 ∧ x1,4,w2 ∧ · · · ∧ x1,n+2,wn

∧x1,n+3,⊔ ∧ · · · ∧ x1,nk−1,⊔ ∧ x1,nk ,#

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 86 / 88

SAT is NP-hard

ϕstart

We need to represent the first row of the tableau as a logic formula.

1 2 3 4 . . . n + 2 n + 3 . . . nk − 1 nk

q0 w1 w2 . . . wn ⊔ . . . ⊔

ϕstart = x1,1,# ∧ x1,2,q0
∧x1,3,w1 ∧ x1,4,w2 ∧ · · · ∧ x1,n+2,wn

∧x1,n+3,⊔ ∧ · · · ∧ x1,nk−1,⊔ ∧ x1,nk ,#

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 86 / 88

SAT is NP-hard

ϕaccept

If an accepting branch exists, then the accept state must be present
somewhere in the tableau.

ϕaccept =
∨

1≤i ,j≤nk

x1,1,qaccept

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 87 / 88

SAT is NP-hard

ϕmove

For configuration i + 1 to be allowable, it needs to be legal to move
from configuration i to configuration i + 1, according to the transition
function of NA.

Changes between configurations i and i + 1 will only occur in a small
window around the location of the state. We call this location (i , j) as
the middle-upper cell in the 2x3 window.

ϕmove =
∧

1≤i<nk ,1<j<nk

(the window at (i , j) is legal

∨
a1,...,a6;legalwindow

(xi ,j−1,a1 ∧ xi ,j ,a2 ∧ xi ,j+1,a3 ∧ xi+1,j−1,a4 ∧ xi+1,j ,a5 ∧ xi+1,j+1,a6)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 88 / 88

SAT is NP-hard

ϕmove

For configuration i + 1 to be allowable, it needs to be legal to move
from configuration i to configuration i + 1, according to the transition
function of NA.

Changes between configurations i and i + 1 will only occur in a small
window around the location of the state. We call this location (i , j) as
the middle-upper cell in the 2x3 window.

ϕmove =
∧

1≤i<nk ,1<j<nk

(the window at (i , j) is legal

∨
a1,...,a6;legalwindow

(xi ,j−1,a1 ∧ xi ,j ,a2 ∧ xi ,j+1,a3 ∧ xi+1,j−1,a4 ∧ xi+1,j ,a5 ∧ xi+1,j+1,a6)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 88 / 88

SAT is NP-hard

ϕmove

For configuration i + 1 to be allowable, it needs to be legal to move
from configuration i to configuration i + 1, according to the transition
function of NA.

Changes between configurations i and i + 1 will only occur in a small
window around the location of the state. We call this location (i , j) as
the middle-upper cell in the 2x3 window.

ϕmove =
∧

1≤i<nk ,1<j<nk

(the window at (i , j) is legal

∨
a1,...,a6;legalwindow

(xi ,j−1,a1 ∧ xi ,j ,a2 ∧ xi ,j+1,a3 ∧ xi+1,j−1,a4 ∧ xi+1,j ,a5 ∧ xi+1,j+1,a6)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 88 / 88

SAT is NP-hard

ϕmove

For configuration i + 1 to be allowable, it needs to be legal to move
from configuration i to configuration i + 1, according to the transition
function of NA.

Changes between configurations i and i + 1 will only occur in a small
window around the location of the state. We call this location (i , j) as
the middle-upper cell in the 2x3 window.

ϕmove =
∧

1≤i<nk ,1<j<nk

(the window at (i , j) is legal

∨
a1,...,a6;legalwindow

(xi ,j−1,a1 ∧ xi ,j ,a2 ∧ xi ,j+1,a3 ∧ xi+1,j−1,a4 ∧ xi+1,j ,a5 ∧ xi+1,j+1,a6)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 88 / 88

SAT is NP-hard

ϕmove

For configuration i + 1 to be allowable, it needs to be legal to move
from configuration i to configuration i + 1, according to the transition
function of NA.

Changes between configurations i and i + 1 will only occur in a small
window around the location of the state. We call this location (i , j) as
the middle-upper cell in the 2x3 window.

ϕmove =
∧

1≤i<nk ,1<j<nk

(the window at (i , j) is legal

∨
a1,...,a6;legalwindow

(xi ,j−1,a1 ∧ xi ,j ,a2 ∧ xi ,j+1,a3 ∧ xi+1,j−1,a4 ∧ xi+1,j ,a5 ∧ xi+1,j+1,a6)

Curtis Larsen (Utah Tech University) CS 3530 Fall 2024 88 / 88

	Measuring Complexity
	Big-O and small-o
	Analyzing Algorithms
	Complexity Relationships Among Models
	Summary

	The Class P
	Polynomial Time
	Example Problems in P

	The Class NP
	Nondeterministic Polynomial Time
	Example Problems in NP
	P, NP, coNP

	NP-Completeness
	Polynomial Time Reducibility
	Definition of NP-Completeness
	The Cook-Levin Theorem
	Additional NP-complete Problems

	NP-Complete Problems
	VERTEX-COVER
	HAMPATH

	SAT is NP-hard

