
CS	4300:	Artificial	Intelligence
Assignment:	Model	Search	Agent
Create	an	agent	to	perform	in	the	Taxi	environment,	(taxi	source	code).

The	performance	measure	used	by	this	assignment	to	assess	the	quality	of	your	agent	will	be	the	episode
total	reward,	averaged	over	at	least	100	episodes.	An	agent	that	doesn’t	complete	some	episodes	(times	out	/
runs	out	of	memory	/	crashes),	will	be	given	an	average	score	of	-200.

After	your	report	and	code	are	reviewed,	assignment	grades	will	be	assigned.	The	maximum	possible	score
will	be	controlled	by	the	agent’s	performance	measure.	See	the	table	below.

Use	the	GitHub	repository	available	for	this	course	to	store	your	solutions.	Make	a	directory	named	 taxi-
model-search ,	and	store	your	agent	in	 taxi-model-search/agent1.py .	This	file	must	contain	a	class	 Agent1 	with
the	methods:

def	__init__(self) :	initializes	the	agent,	including	creating	a	model	instance
def	reset(self) :	resets	the	agent’s	data	and	model	instance
def	agent_function(self,	state) :	receives	 state 	an	observation	from	the	gymnasium	environment,
returns	an	action	for	the	gymnasium	environment.

Note	that	you	are	to	implement	an	agent	that	has	a	model	of	the	environment	and	uses	one	of	the
uninformed	search	algorithms	we	have	discussed.	DO	NOT	make	a	reinforcement	learning	agent,	or	use
some	other	algorithms	for	these	agents.

The	model	must	contain	at	least	these	methods:

ACTIONS(s)	->	list	of	actions	allowed	in	state	s
RESULT(s,	a)	->	state	that	results	from	action	a	in	state	s
GOAL_TEST(s)	->	true	or	false,	depending	on	the	state	s

Where	 s 	is	the	state	received	from	the	gymnasium	environment,	and	 a 	is	an	action	number	used	by	the
gymnasium	environment.

We	discussed	in	class	that	some	form	of	depth	limited	search	would	probably	be	most	successful	for	this
problem,	with	iterative	deepening	search	probably	being	the	best.

Create	a	short	report,	containing	these	elements:

An	explanation	of	which	search	algorithm	you	chose,	and	why.	It’s	fine	if	you	use	our	discussion	in	class
to	provide	the	explanation	of	why	you	chose	it.
The	average	performance	of	your	agent	over	100	(or	more)	episodes.

Required	Submissions
Code	submitted	to	github.
A	PDF	file	containing	your	report	submitted	to	Canvas.

Performance	Measure	Expectations
Average	Score Maximum	Possible	Grade
a	<	-100 50%
-100	<=	a	<	0 65%
0	<=	a	<	1 75%
1	<=	a	<	2 80%
2	<=	a	<	3 85%
3	<=	a	<	5 90%
5	<=	a	<	7 95%
a	>=	7 100%

Hints
Any	solution	to	this	problem	requires	that	you	drive	to	the	passenger,	pick	them	up,	drive	to	the	destination,

https://gymnasium.farama.org/environments/toy_text/taxi/
https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/toy_text/taxi.py


drop	them	off.

You	might	want	to	consider	solving	the	problem	in	two	stages:

Solve	the	problem	of	driving	to	the	passenger	and	picking	them	up.
Solve	the	problem	of	driving	to	the	destination	and	dropping	off	the	passenger.

This	will	make	the	depth	of	goal	states	about	1 ⁄2	of	goal	states	that	would	be	found	solving	the	full	problem.
Since	the	depth	of	solution	is	the	exponent	in	our	time	complexity,	this	is	a	huge	time	savings.


