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Classification Objectives

Objectives:

▶ Understand classification tasks

▶ Identify classification problems

▶ Review common classification algorithms

▶ Determine effectiveness of classification models

▶ Train models using classification algorithms

▶ Select best models
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Classification What is classification?

Definition

▶ Binary classifier

▶ Multi-class

▶ One vs all (OVA) or One-vs-rest

▶ One vs one
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Classification What is classification?

Example Task
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Classification What is classification?

Task Identification

Which are classification?

▶ Given an image of a cell, predict if it is cancerous.

▶ Given an image of a cell, predict its size.
▶ Given an image of a digit, predict its numerical value.
▶ Given demographic information of a passenger on the titanic,

predict if they will survive.
▶ Given transcript information of a new graduate, predict their

starting salary.
▶ Given transcript information of a new graduate, predict their

starting tax bracket.
▶ Given medical and demographic information of a patient, predict

their probability of a heart attack in the next 24 months.
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Classification What is classification?

Example Data
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Classification Common Algorithms

Common Algorithms
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Classification Common Algorithms

List

▶ Decision Tree

▶ Logistic Regression (Yes, it’s a classifier)

▶ Stochastic Gradient Descent

▶ Nearest Neighbors

▶ Support Vector Classification

▶ Random Forest

▶ Gradient Boosting

Curtis Larsen (Utah Tech University) CS 4320 Spring 2025 10 / 26



Classification Common Algorithms
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Classification Common Algorithms
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Classification Common Algorithms
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Classification Metrics

Metrics
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Classification Metrics

Sample Numbers

There are 60,000 samples for a binary classification task.

5,421 of the samples are the positive case.

54,579 of the samples are the negative case.

A certain binary classifier predicts 3,530 of the positive samples
correctly, and 53,892 of the negative samples correctly.
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Classification Metrics

Accuracy

Percentage of predictions that were correct.

In our sample case

Accuracy = (53, 892 + 3, 530)/60, 000 = 0.957.

Sounds pretty good.

Curtis Larsen (Utah Tech University) CS 4320 Spring 2025 16 / 26



Classification Metrics

Accuracy

Percentage of predictions that were correct.

In our sample case

Accuracy = (53, 892 + 3, 530)/60, 000 = 0.957.

Sounds pretty good.

Curtis Larsen (Utah Tech University) CS 4320 Spring 2025 16 / 26



Classification Metrics

Accuracy

Percentage of predictions that were correct.

In our sample case

Accuracy = (53, 892 + 3, 530)/60, 000 = 0.957.

Sounds pretty good.

Curtis Larsen (Utah Tech University) CS 4320 Spring 2025 16 / 26



Classification Metrics

Confusion Matrix

Predicted Negative Predicted Positive
Actual Negative True-Negative False-Positive
Actual Positive False-Negative True-Positive

In our sample case

Predicted Negative Predicted Positive
Actual Negative 53,892 687
Actual Positive 1,891 3,530

Do we still feel good about the quality?
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Classification Metrics

Confusion Matrix - Metrics

▶ TN, FP, FN, TP

▶ precision = TP
TP+FP

▶ recall = TP
TP+FN

▶ F1 =
2

1
precision+

1
recall

▶ F1 =
TP

TP+FP+FN
2
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Classification Metrics

Precision-Recall Example

In our sample case

Predicted Negative Predicted Positive
Actual Negative 53,892 687
Actual Positive 1,891 3,530

precision =3530/(687 + 3530) = 0.837

recall =3530/(1891 + 3530) = 0.651

F1 =3530/(3530 + ((687 + 1891)/2)) = 0.732

Now how do we feel about the quality?
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Classification Metrics

Limits

Metric minimum maximum
precision = TP

TP+FP

0.0 1.0

recall = TP
TP+FN 0.0 1.0

F1 =
TP

TP+FP+FN
2

0.0 1.0
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Classification Metrics

Summary

▶ Accuracy

▶ Confusion Matrix

▶ Precision

▶ Recall

▶ F1
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Classification Implementation

Implementation
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Classification Implementation
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Classification
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Classification Summary

▶

▶

▶
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