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Abstract—Financial supervision plays a pivotal role in society
as it provides early warnings of financial activities and aids the
government in detecting financial crimes. Detecting anomalous
activities from normal financial activities is extremely challenging
due to their disguise and complexity. However, existing anomaly
detection methods in real-world financial scenarios typically
suffer from some limitations: (a) Their formulations are overly
simplistic to effectively identify complex anomalies; (b) Machine
learning-based anomaly-detection methods lack enough training
label, interpretability, and confidence, making it difficult to obtain
approval from governments or financial institutions; (c) Many
of them only focus on the financial transaction itself, ignoring
the spatio-temporal characteristics of transaction and social
relationships. To circumvent the challenges mentioned above, this
paper proposes a novel anomaly-detection framework to detect
the anomalies from disguised normal financial activities and infer
clue chains for them. In particular, we are the first to formalize
ten anomalies by reference to actual bank statements, and then
three types of anomaly-detecting algorithms are proposed to
discover these anomalies from financial activities. Next, we utilize
an intelligent search algorithm to trace the most suspicious activ-
ities (clue chains) for institutions, improving the interpretability
compared with learning-based methods. More importantly, we
developed an anomaly-detection system, Themis, to detect these
complex financial anomalies, which has been deployed in some
real scenarios. The performance of Themis is demonstrated
through some comprehensive extensive experiments and case
studies on synthetic datasets and real bank statements.

Index Terms—financial activities, anomalies, clue chains

I. INTRODUCTION

Financial supervision plays a vital role in maintaining

the stability of financial systems and supporting sustainable

economic growth [1]–[3], providing early warning of abnormal

financial activities. Given some financial activities, one of

the major tasks in this field is to detect anomalous financial

activities. Anomalous financial activities can be defined as a

series of illegal transactions forbidden by financial institutions,

such as money laundering and bridge loans [4], [5]. Explicit

anomalies are prior anomalies that can be easily detected,

such as exceeded amounts and limited log-in. They have been

well inspected by rule-based methods [6]. Implicit anomalies

are complex posterior-anomalous patterns hidden in normal

financial activities, where accounts or transactions might be

normal and only turn out to be anomalous when considered

as correlated subgraphs. They are common core components of
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Fig. 1: A bridge-loan case: (a) Charlie has submitted a loan

application for $120 (e5) to the bank, but there was a long

waiting period; (b) Bob (a bank staff) promises to help Charlie

get the loan as soon as possible, on the condition that charlie

pays $20 in interest. This means that Charlie needs to pay

back $120 as usual (e5) but only get $100. (c) Then Bob

raises $100 (e1) from Alice to Charlie (e2), promising to repay

the principal and interest for $110 (e4) as long as the bank

appropriates (e3). In this case, Bob illegally obtained $10.

illegal financial cases. For example, Fig. 1 is an illicit bridge-

loan case. In normal cases, Charlie should wait for the bank to

release the loan after submitting the application to the bank.

However, he chooses to get the loan from Bob (a bank staff)

at high interest during this period. Bob takes advantage of his

occupation to earn illicit income via an implicit anomaly(e3 →
Bob → e4 with the brokerage as an implicit anomaly). A group

of financial activities with this pattern may indicate a potential

anomaly is taking place. However, there are no pioneer works

to detect these anomalies since their anomalous patterns are

complex and undetectable. In particular, we focus on detecting

these anomalies from disguised normal financial activities.

Existing financial anomaly-detection methods can be cate-

gorized into traditional rule-based methods [6], [7] and deep

learning-based methods [2], [8]–[11]. Previous rule-based ap-

proaches have mainly focused on predefined rules manually

and detecting node- or edge-level anomalies based on these

rules. Although these methods are simple and intuitive, they

suffer from limited flexibility, failing to detect complex anoma-

lies. Recently, deep learning-based methods use supervised

learning techniques to predict anomalies of nodes (cards) or

edges (transactions) on the financial graph [2], [8], [12] (out-
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liers and dense subgraphs with unusual topological structure

are not regarded as reasonable financial anomalies due to

lack of transaction information.). However, they also suffer

from many limitations in real-world scenarios: (1) The scarcity
of training labels is significant, posing a great challenge to
supervised detection. They formalize anomaly detection as

a supervised prediction task, highly dependent on financial

anomalies with precious and rare labels in real-world scenar-

ios. (2) The ability to detect complex anomalies is inadequate.
Existing financial anomaly formulations that only consider

node- or edge-level do not support complex anomalies, e.g.,

bridge loans shown in Fig. 1. (3) The interpretability of these
anomalies detected is poor. Although deep learning-based

methods have already obtained good detection accuracy, it is

hard to explain why abnormal. The explainability of financial

anomalies is of great concern to financial institutions and

only those explainable anomalies can attract the attention of

institutions, thus playing the role of early warning.

Despite the success in detecting financial anomalies, most

previous works only focus on detecting node- or edge-level

anomalies from transactions. There is no academic pioneer

to detect complex implicit anomalies from disguised nor-

mal financial activities. This is mainly because the detection

of them presents several intractable challenges practically:

(1) Difficulty in formalizing and detecting complex-diverse

anomalies from disguised normal financial activities. Although

there are many subgraph anomaly detection methods, they

mainly focus on the topological structure of the graph (outlier

and dense subgraphs), which is significantly different from

our tasks “detecting anomalies from disguised normal financial

activities”. (2) Difficulty in improving interpretability and con-

fidence of financial anomalies from an end-to-end supervised

perspective. (3) Difficulty in formalizing and modeling hetero-

geneous information (social relationships and spatial-temporal

features of financial activities) to enhance the accuracy of

detection. The heterogeneous information mentioned above is

not considered when detecting anomalies due to its complex

structures and attributes, but this information is decisive in

anomaly detection, as shown in Fig. 2. (4) Difficulty in tracing

clue chains starting from anomalies to assist financial insti-

tutions in detecting anomalies. The discovery of clue chains

can free the labor force from time-consuming and tedious

verification tasks. However, there is no pioneer academic work

to explore the tracing of clue chains in financial activities.

In order to effectively detect complex anomalies from

disguised normal financial activities, we have worked closely

with a financial institution to understand implicit anomalies

and verify that they are the core components of illegal cases in

financial activities. In this paper, we develop a novel uniform

framework to detect anomalies, considering the heterogeneous

and complex spatial-temporal and social features. Specifically,

we are the first to formalize ten complex implicit anomalies

by reference to actual bank statements where every account

and transaction is legitimate. Then we design a family of

detection algorithms to dynamically detect these anomalies

under a practical uniform framework. In particular, we propose

Fig. 2: Complex heterogeneous features in financial activities.

the clue chain tracing technology to trace potential clues based

on the anomalies mentioned above, and then we evaluate

and recommend the most suspicious clue chains to financial

institutions. Here, we abandon learning-based methods due

to their extremely poor interpretation and confidence. More

importantly, we developed a practical anomaly-detection sys-

tem, Themis, which has been deployed and applied in many

real institutions. In experiments, we conduct comprehensive

experiments to evaluate Themis’s efficiency and effectiveness

on actual bank statements and synthesis datasets.

The main contributions of this paper are as follows: (1)

We design a novel practical framework to detect anoma-

lous financial activities from disguised normal financial ac-

tivities. (2) We are the first to formalize three patterns of

normal financial activities and ten complex anomalies based

on real financial scenarios, meanwhile considering necessary

heterogeneous features, including social relations and spatial-

temporal features of financial activities. (3) We design a fam-

ily of detection algorithms to dynamically monitor complex

anomalies in financial activities. (4) We propose a clue chain

tracing technology to infer potential clue chains starting from

the anomalies mentioned above and recommend the most

suspicious clue chains to financial institutions. with high inter-

pretability since the funding flows of clue chains are clear and

transparent. These clue chains are highly interpretable since

the funding flows of clue chains are clear and transparent. (5)

More importantly, we developed an anomaly-detection system,

Themis, to detect anomalies from disguised normal financial

activities, which has been deployed in some real scenarios.

Specifically, we evaluate the efficiency and effectiveness of

Themis on actual bank statements and synthesis datasets.
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II. RELATED WORK

Financial supervision plays a vital role in maintaining the

stability of financial ecosystems and supporting sustainable

economic growth, providing early warning of abnormal activ-

ities [1], [2], [13]. There has been a long time of research

efforts in this field [14]–[19]. Traditional anomaly-detection

methods in financial supervision detect intuitive node(card)-

or edge(transaction)-level anomalies by pre-defined rules [6],

[7] or learning-based strategies [20], [21]. For instance, Kim et

al. [6] formalize several anomalous rules to detect anomalies

in financial activities, such as limited log-in time, limited

log-in number, changed log-in location, and so on. These

rules can only filter many node-/edge-level simplistic anoma-

lies well. In addition, some researchers [2], [8] formalize

the anomaly detection tasks as classification tasks and pre-

dict node(account)- or edge(transaction)-level anomalies in a

learning-based manner [7], [22], [23]. They mainly learn the

representation of nodes and edges with the help of attribute

features and the topological structures of the graph [10], [24]–

[27]. For instance, SeqFD [28] predicted fraud by aggregating

statistical features of historical transactions within a time-

based sliding window. In addition, Reddy et al. [29] modeled

fraudulent transactions by introducing the temporal features

and the structural features captured by GNN. Meng Shen et

al. [30] propose a TSRGL framework, which uses R-GCN to

learn the topology structure of the historical object-relation

snapshot graph, and realizes the threat prediction of abnormal

transaction behaviors. Cao et al. [12] construct financial trans-

action networks based on historical transactions, then learn

users’ topological structures in an unsupervised manner and

predict the anomalies by tree-based classifiers. These methods

all suffer from limited flexibility, only detecting the simple

anomalies (node- or edge-level anomalies), and failing to

inspect complex abnormal patterns in financial activities. The

scarcity of training labels poses a huge challenge to learning-

based methods since their detection accuracy is highly depen-

dent on the volume of data with labels. What’s worse, these

methods all suffer from limited flexibility, only detecting the

simple anomalies (node- or edge-level anomalies), and failing

to inspect complex abnormal patterns in financial activities.

Recently, some learning-based methods regard outliers [15],

[19] or dense subgraph [19], [31], [32] as significant abnor-

mal patterns and mine these patterns from the perspective

of structural characteristics. For instance, Zhang et al. [33]

designed an anomalous subgraph autoencoder (AS-GAE) to

detect outliers from the perspective of topological structure.

Anting Zhang et al. [34] designed a subgraph embedding

method to identify fraud communities that regard dense sub-

graphs as anomalies. All these works define anomalies from

the perspective of structural characteristics and only utilize

the topological information to detect significant outliers and

dense subgraphs. However, outliers and dense subgraphs are

not necessarily abnormal patterns in financial activity, and it is

significantly unreasonable to detect financial anomalies based

on topological structure in real scenarios, leading to many

false positive samples. The vital factors influencing financial

anomalies should be the transfer amount, the flow of funding

indicating where the money comes from and what it is used

for, social relations among operators, and so on.

In conclusion, existing financial anomaly-detection methods

can only detect node-/ edge-level anomalies accurately, failing

to detect complex anomalies from disguised normal financial

activities. Although some works focus on subgraph detection,

anomalies defined by them are significantly different from

financial anomalies, and it is unreasonable completely to detect

financial anomalies based on outliers and dense subgraphs. In

addition, very few pioneers introduce heterogeneous informa-

tion when exploring abnormal financial activities due to their

complexity. They are necessary when detecting anomalies.

III. PROBLEM FORMULATION

In this section, we formulate the problem we focus on. First,

we introduce the definitions of the four inputs problem, namely

bank account, person, financial activity, and social relation.

They are the original data that can be exploited by the officers

for the analysis of financial crime. Then we give the statements

of the Malicious Financial Activity Detection Problem and

explain its significance in reducing the cost of institutions.

Definition 1 (Bank Account). A bank account, denoted by v, is
related to the following attributes: owner(v) denotes the per-
son who apply for the card, regcity(v) is the registration city
of card, and type(v) is the type of account including “bank
account”, “enterprise account” and “personal account”.

Definition 2 (Person). A person, denoted by p, is related with
the following attributes: Accounts(p) = {vp1 , vp2 , · · · , vpn}
represents the bank accounts owned by p, loct(p) represents
p’s location at time slot t, and type(p) is the type of person,
e.g., “citizens” and “bank staff”.

Definition 3 (Financial Activity). A financial activity from
bank account vi to account vj at time slot t, denoted by eti,j , is
related with the following attributes: value(eti,j) represents the
amount delivered in eti,j , actloc(eti,j) is the activity location
of eti,j , and IP(eti,j) is the operating IP address of eti,j . Corre-
spondingly, type(eti,j) denotes the transaction type, including
“transfer”, “deposit”, and “withdraw”.

Definition 4 (Relative Relation). A relative relation from
person pi to person pj , denoted by ri,j , is a binary variable.
i.e. ri,j ∈ {0, 1}. ri,j = 1 means pi is immediate relatives of
pj . In particular, ri,i = 1.

Malicious Financial Activity Detection Problem. Given a

set of bank account V = {vi} and the related person set

P = {pi}, the financial activity set E = {eti,j}, and the

social relation set R = {ri,j |ri,j = (pi, pj), pi, pj ∈ P}, find

abnormal financial activities from disguised normal financial

activities and infer a clue chain (i.e. a sequence of financial

activities among different accounts) for these suspect financial

activities eti,j that can tell where the money value(eti,j) comes

from and what it is spent on.
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The practical significance of this problem is to assist finan-

cial institutions in showing clues of suspect activities. The clue

chains are finally determined to be involved in financial crimes

by the law officers (can be verified in practice). Generally,

many anomalies are disguised in normal financial activities,

which harms the financial ecosystems. Thus, it is important to

define and detect abnormal financial activities.

IV. MODELING

We formulate a financial activity network to represent the

bank transactions from historical databases, including trans-

fers, deposits, and withdraws. Instead of using one vertex to

denote one person, we use a bank account to indicate the basic

smallest atomic unit in the system since the bank account is

the core component of financial activities.

Definition 5 (Financial Activity Network, FAN). A financial
activity network G = (V,E) is a directed parallel graph
recording financial activities. V = {v1, . . . , vn} is a set
of bank accounts (e.g., debit card, credit card, and so on),
and E = {eti,j |eti,j = (vi, vj)} is a set of directed edges,
representing a financial activity from vi to vj at time slot t.
Ein

t1,t2(vi) and Eout
t1,t2(vi) are the set of in/out edges of node

vi whose timestamps t satisfy t ∈ [t1, t2), respectively.

,
(a) Transfer (NA1)

,
(b) Deposit (NA2)

,
(c) Withdraw (NA3)

Fig. 3: The transaction type of financial activities.

To better illustrate the FAN, we use a card to represent a

bank account and use a solid line to define a financial activity.

Fig. 3 shows the three types of financial activities in an FAN.

• Transfer Activity: a direct edge eti,j from vi to vj , as

shown in Fig. 3(a). It means money is transferred from

one account vi to another account vj at time slot t,
including transferring-in timestamp tin and transferring-

out timestamp tout. If not specified, the default is a

transferring-out timestamp.

• Deposit Activity: an anticlockwise loop eti,i from vi to

itself, as shown in Fig. 3(b). It means that the owner

deposits cash with amount value(eti,i) into his/her bank

account at time slot t.
• Withdraw Activity: a clockwise loop eti,i from vi to

itself, as shown in Fig. 3(c). It means that the owner

withdraws cash with the amount value(eti,i) from his/her

bank account.

Since G contains self-loops and parallel edges, it is not a

simple graph. Additionally, each vi only represents a bank

account, while a person may have multiple bank accounts for

transactions. These transaction records also reflect human be-

haviors socially. Therefore, to better depict financial activities,

we need to construct another graph, say, a relative network,

as an auxiliary graph for help.

Definition 6 (Relative Networks). A relative Network is a
directed graph S = (P,R), where P = {p1, · · · , pm} denotes
the person set, and R = {ri,j |ri,j = (pi, pj)} denotes the
relative relation set from pi to pj . We use a solid line pointing
from pi to pj to express such immediate relative relationships.

There exists a many-to-one matching relationship between

FAN G and relative network S. A person pi in S may hold

multiple accounts in G, while an account vj only belongs

to a legal person in S. We demonstrate such relationships in

Fig. 4 and define V (pi) = {vi1, . . . , viw} as the account set

owned by person pi, and owner(vi) as the owner of vi, where

owner(vi) ∈ P .

Own

Bank and Bank 
Account

Transfer Activity

Relationship

Deposit/Withdraw

Fig. 4: Mapping between FAN and relative network.

With the help of FAN G and relative networks S, we can

identify normal financial activities before detecting anomalies

in a financial system. Obviously, the three basic activities

mentioned in Figs. 3(a)-3(c) are normal activities, and we

denote them as NA1, NA2, and NA3, respectively.

Table I lists symbols and notations used in this paper, some

of which are defined by their appearances.

V. EXPLORING ANOMALIES

Implicit anomalies disguised in normal financial activities

pose a huge challenge to financial supervision since every

single transaction is legitimate due to individuals’ conceal-

ment. In this section, we attempt to explore these implicit

anomalies and formalize ten implicit anomalies hidden in three

normal financial activities. These implicit anomalies are the

core components of financial anomalies and have potential

risks leading to financial crimes.

Definition 7 (Sensitive-Region Anomaly, AA1). A bank ac-
count vi may exist anomaly if it is issued in sensitive regions
Cs listed by the financial institution. Say, vi has AA1, if its
registration city regcity(vi) ∈ Cs.

Definition 8 (Transaction-Address Anomaly, AA2). A bank
account vi has a transaction-address anomaly AA2 if vi has
a financial activity in one city but its owner is verified in
another city at the same time, i.e. ∃eti,j ∈ E, actloc(eti,j) �=
loct(owner(vi)).

Definition 9 (Transaction-IP Anomaly, AA3). A transaction-IP
anomaly happens if multiple transfer activities E′ ⊆ Et,t+Δ

from different account owners P ′ ⊆ P are operated on the
same IP address, i.e., ∀et1i,a, et2j,b ∈ E′, IP (et1i,a) = IP (et2j,b)
and |P ′|>τc. Here, τc is the frequency threshold specified by
the financial institutions.
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TABLE I: Primary notations

Notation Description

G = (V,E) An FAN with account set V = {v1, . . ., vn} and
financial activity set E = {eti,j |eti,j = (vi, vj)}.

type(v) Types of account v ∈ V : type(v) ={“bank account”,
“enterprise account”, “personal account”}.

type(eti,j) Types of financial activity eti,j ∈ E:

type(eti,j)={“transfer”, “deposit”, “withdraw”}.
owner(v) The owner of the account v ∈ V .
regcity(v) The registration city of the account v ∈ V .
value(eti,j) The transfer amount of eti,j ∈ E.

actloc(eti,j) The activity location of eti,j ∈ E.

IP(eti,j) The operating IP address of eti,j ∈ E.
P(vi, vj) A financial path (vi, v1, · · · , vj) in the FAN.
S = (P,R) A relative network, with people set P={p1, . . . , pw}

and relative relationship set R={ri,j |ri,j = (pi, pj)}.
type(pi) Types of person pi∈P : type(pi) ={“citizens”, “bank

staff”}.
loct(pi) The location of the person pi at time slot t.
Et1,t2

The edge set of all activities within time interval [t1, t2).

Ein
t1,t2

(vi) The edge set of transferred-in activities of vi within time
interval [t1, t2).

Eout
t1,t2

(vi) The edge set of transferred-out activities of vi within time
interval [t1, t2).

|Et1,t2 | The number of edges in set Et1,t2 .
C Evidence Chain.
Cs The sensitive region set.
λ Upper bound on the legal ratio.
τc A frequency threshold specified by financial institutions.
εv A small monetary threshold, indicating kickbacks.
εt, εa A time interval and amount threshold when tracing clue

chains.
Δ The threshold of a small time interval.

Definition 10 (Funding-Frequency-Fluctuation Anomaly,

AA4). A bank account vi has a funding-frequency-fluctuation
anomaly AA4, if the frequency of recent transactions far
exceeds the frequency of previous ones, i.e., |Ein

t−Δ,t(vi)| +
|Eout

t−Δ,t(vi)| ≥ λ · (|Ein
t′−Δ,t′(vi)| + |Eout

t′−Δ,t′(vi)|), where t′

is the previous time stamp of t, and λ is a larger threshold.

Definition 11 (Funding-Amount-Fluctuation Anomaly, AA5).
A bank account vi has a funding-amount-fluctuation anomaly
AA5, if the recent transaction amount far exceeds the pre-
vious one, i.e.,

∑
e∈Ein

t−Δ,t(vi)∪Eout
t−Δ,t(vi)

value(e) ≥ λ ·
∑

e∈Ein
t′−Δ,t′ (vi)∪Eout

t′−Δ,t′ (vi)
value(e).

Definition 12 (Split Anomaly, AA6). An account vi has a split
anomaly AA6, if there is a star structure in FAN, centered
at vi with outgoing edge set E′ ⊆ Eout

t−Δ,t(vi) to accounts
with different owners, i.e., ∀et1i,j ∈ E′, t1 ∈ [t −Δ, t), check
if r = (owner(vi), owner(vj)) /∈ R and |E′| > τc, where
E′ ⊆ Eout

t−Δ,t(vi).

Definition 13 (Merge Anomaly, AA7). An account vi has
a merge anomaly AA7, if there is a star structure in FAN,
centered at vi with incoming edges E′ ⊆ Ein

t−Δ,t(vi) from
unfamilar accounts, i.e., ∀et1j,i ∈ E′, t1 ∈ [t − Δ, t), check
if r = (owner(vj), owner(vi)) /∈ R and |E′| > τc, where
E′ ⊆ Ein

t−Δ,t(vi).

Definition 14 (Immediate In-Out Anomaly, AA8). A bank
account vi has an immediate in-out anomaly AA8, if it is
frequently transferred in E1 ⊆ Ein

t−Δ,t(vi) and transfers out
E2 ⊆ Eout

t−Δ,t(vi) a sum of money within a short period of

time, i.e.,
∑

e∈E1
value(e)−∑

e′∈E2
value(e′) ≤ εv .

Definition 15 (Road-Toll Anomaly, AA9). The road-toll
anomaly happens in a path with at least two edges in FAN,
if the intermediate account vi in the path belongs to a
bank staff or his/her relatives and the account receives some
kickback, i.e., 0 < value(et1a,i) − value(et2i,b) < εv , and
the owner of vi meets any of the following conditions: (i)
type(owner(vi))=“bank staff”, or (ii) there exists a person
p ∈ P , type(p)=“bank staff” and r = (owner(vi), p) ∈ R.

Definition 16 (One-Way-Transfer Anomaly, AA10). If the
account vi transfers money to the account vj through dif-
ferent paths (maybe across other persons, enterprises, or
bank accounts) without paths from vj to vi, there may be
illegal transactions). Say, the account vi and vj have AA10, if
|P(vi, vj)| > 0 and P(vj , vi)| = 0, where vi is the transfer-
out account and vj is the account transferred in. P(vi, vj)
denotes the path set containing all reachable paths from vi to
vj , and |P(vi, vj)| is the number of paths from vi to vj .

VI. ALGORITHM DESIGN

In this section, we propose a uniform framework to dy-

namically detect anomalies from disguised normal financial

activities. Firstly, we design a family of algorithms to detect

implicit abnormal patterns (anomalies) dynamically from nor-

mal financial activities. Then, we propose the “Clue Chains

Tracing” algorithm to find and infer clue chains from these

suspect financial anomalies that can tell where the money

comes from and what it is used for.

A. Overview of the Detection Framework
Detecting anomalies from disguised normal financial activ-

ities is one of the challenging tasks, especially from disguised

normal activities. In this part, we propose a novel uniform

framework to detect anomalies from disguised normal finan-

cial activities by utilizing database search techniques. Newly

discovered anomaly patterns can be added to the framework

easily. We classify ten implicit anomalies of financial activities

(AA1∼AA10) into three categories, including (i) single online

abnormal activity: a new activity is abnormal; (ii) composite

online abnormal activity: a combination of new activity and

some historical activities in FAN; and (iii) composite history

abnormal activity: anomalies hidden in historical financial

activities in FAN. Accordingly, we design trigger-based de-

tection, monitor-based detection, and mining-based detection

algorithms, respectively. The structure tree of detecting anoma-

lies efficiently is demonstrated in Fig. 5.

The framework of malicious financial activity detection is

as follows: (1) Anomaly Detection Algorithms. We design a

family of detecting algorithms to monitor intractable implicit

anomalies induced by new arrival transactions in real time. (2)

Clue Chains Tracing. Trace the detected anomalies (abnormal

patterns) to form clue chains. (There may be multiple possible

chains related to an anomaly.) (3) Clue chains rank and rec-

ommendation. Estimate the clue chains traced and recommend

the most suspicious chains to financial institutions.
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Fig. 5: Structure tree of Themis.

B. Anomaly Detection Algorithms

The three types of anomalies are detected in different ways.

We give the three corresponding algorithms as follows.

Trigger-based detection. The trigger-based detection algo-

rithm dynamically checks every new arrival single financial

activity by examining its relative relations and spatio-temporal

features, shown as Algorithm 1. The algorithm can find single

online anomalies AA1 and AA2 in constant time.

Algorithm 1: Trigger-based detection (AA1 and AA2)

Input: A new arrival financial activity actn;

Output: Detected anomalies AA1 and AA2;

1 AA1, AA2 ← ∅;

2 if actn is a “NewAccount” v and regcity(v) ∈ Cs

then AA1.add(actn);

3 if actn is a “NewTransfer” e = (vi, vj , t) and
actloct(e) �= loct(owner(vi)) then AA2.add(actn);

4 Return AA1 and AA2.

Monitor-based detection. The monitor-based detection al-

gorithm detects a set of abnormal activities by combining new

arrival activities with historical activities, where FAN is normal

but “FAN + new arrival activities” is abnormal. It is obvious

that AA3-AA8 are all typical composite online anomalies.

The monitor-based detection algorithm checks the time

sliding window [t−Δ, t), where t is the time slot of a new

arrival activity actn. A straightforward way is to examine

anomalies within the sliding window [t−Δ, t) according to the

definitions of AA3-AA8. In order to accelerate the calculations,

we propose an incremental detection (shown as Algorithm 2)

by comparing with its previous sliding window [t′−Δ, t′),
where acte is the set of expired activities (if any) for the new

window [t−Δ, t).

Algorithm 2: Monitor-based detection (AA3 -AA8)

Input: A new activity actn with time slot t;
Previous time window [t′ −Δ, t′);

Output: Detected anomalies AA3 – AA8;

1 AA3, AA4, AA5, AA6, AA7, AA8 ← ∅;

2 foreach AAi ∈ AA3 – AA8 do
3 Calculate expired acte within [t′−Δ, t−Δ);
4 if actn and acte satisfy the alarm condition then
5 AAi.add(actn);

6 Return AA3 – AA8;

The alarm conditions of AA3 – AA8 are listed as follows.

• Alarm condition of AA3 (Transaction-IP Anomaly). Sup-

pose a new activity actn is initiated on an account v and

completed on a device with a certain IP address ip. Let

Eout
t′−Δ,t′(v) be the set of activities initialed on v within

[t′ − Δ, t′). We could maintain a hash index on Eout
t′−Δ,t′(v)

for different IP addresses. Then, we can use O(1) time to get

the set of activities E′
ip ⊆ Eout

t′−Δ,t′(v) whose corresponding

activities are operated on ip within [t′ −Δ, t′). Let Ee ⊆ E′
ip

be the set of activities within [t′ −Δ, t−Δ), then the alarm

condition of AA3 is |E′
ip| − |Ee|+ 1 > τc.

• Alarm condition of AA4 (Funding-Frequency-Fluctuation

Anomaly). For the account v initiated on actn, the alarm

condition of AA4 is (λ− 1) · (|Ein
t′−Δ,t′(v)|+Eout

t′−Δ,t′(v)|) +
(|Ein

t′−Δ,t−Δ(v)|+ |Eout
t′−Δ,t−Δ(v)|) ≤ 1.

• Alarm condition of AA5 (Funding-Amount-Fluctuation

Anomaly). For the account v initiated on actn, the alarm con-

dition of AA5 is (λ−1)·∑e∈Ein
t′−Δ,t′ (v)∪Eout

t′−Δ,t′ (v)
value(e)+

∑
e∈Ein

t′−Δ,t−Δ
(v)∪Eout

t′−Δ,t−Δ
(v) value(e) ≤ 1.

• Alarm conditions of AA6 and AA7 (Split and Merge
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Anomaly). For the account v initiated on actn, we could

maintain a hash index on Eout
t′−Δ,t′(v) for cards with different

owners. Then, we can use O(1) time to get the set of activities

Eout
owner ⊆ Eout

t′−Δ,t′(v) whose transferred-out cards have the

same owner with v. Let Eout ⊆ Eout
t′−Δ,t′(v)/E

out
owner be the

set of transferred-out activities within [t′−Δ, t−Δ), then the

alarm condition of AA6 is |Eout
t′−Δ,t′(v)| − |Eout|+ 1 > τc.

Similarly, let v be the transferred-in account of actn. Let

Ein
owner ⊆ Ein

t′−Δ,t′(v) be the activities whose transferred-

in account have the same card owner with v, and Ein ⊆
Ein

t′−Δ,t′(v)/E
in
owner be the set of transferred-in activities

within [t′ − Δ, t − Δ), then the alarm condition of AA7 is

|Ein
t′−Δ,t′(v)| − |Ein|+ 1 > τc.

• Alarm condition of AA8 (Immediate In-Out Anomaly).

For the account v initiated on actn, let en be the

corresponding edge of actn and vald be the difference

value
∑

e∈Ein
t′−Δ,t′ (v)

value(e) − ∑
e∈Eout

t′−Δ,t′ (v)
value(e) −

(
∑

e∈Ein
t′−Δ,t−Δ

(v) value(e) − ∑
e∈Eout

t′−Δ,t−Δ
(v) value(e)),

then the alarm condition of AA8 is vald + value(en) > εv or

vald − value(en) > εv .

Mining-based detection method. The mining-based detec-

tion algorithm discoveries a set of composite history abnormal

activities (AA9 and AA10) by searching historical activities

in FAN, shown as Algorithm 3. The verification of reach-

ability among different accounts is improved via introducing

maximum-flow min-cut theory [35], [36], pruning unnecessary

search paths and early stopping in DFS when detecting AA10.

Algorithm 3: Mining-based detection (AA9 and AA10)

Input: An FAN G = (V,E)
Output: Detected anomalies AA9 and AA10.

1 AA9, AA10 ← ∅;

2 foreach vi ∈ V do
3 foreach et1j,i ∈ Ein(vi) do
4 start← et1j,i;

5 foreach et2i,k ∈ Eout(vi) do
6 if value(et1j,i)− value(et2i,k) < εv then

end← eti,k ;

7 AA9.add((start,end));

8 DFS from vi, label the visited accounts, and add

vj to an empty set V1 when visiting a labeled vj ;

9 foreach vj ∈ V1 do
10 if The maximum flow from vj to vi is 0 then
11 Ec ← the minimum cut set found by the

maximum flow algorithm from vi to vj ;

12 foreach (vi, vk) ∈ V1 do AA10.add(eti,k);

13 foreach (vk, vj) ∈ V1 do AA10.add(etk,j);

14 Return AA9 and AA10.

C. Clue Chains Tracing
For a detected anomaly with an amount of money, a

financial institution may want to trace where the money comes

from and what is it used for. We mine clue chains by tracing

the activities in FAN and require that the final discovery of

the chain of clues includes the detected abnormal activity. The

main idea of the clue chain tracing algorithm is based on the

the detected activity and examine its neighborhood nodes in

FAN. We trace the source of the money by the similarity of

the timestamp and the amount of money.

In order to recommend the most suspicious clue chains

to institutions, we evaluate these chains by scoring rules

and choose the most suspicious chains. The scoring rules

are dynamically adjusted according to the business scenario,

taking into account time interval, transfer amount, intimacy,

and so on, since different clue chains and relationships have

different importance for institutions. The framework for chain

tracing and recommendation is as follows: (a) Set the time and

money thresholds; (b) Start from suspect anomalies detected

and trace abnormal financial activities according to the human-

money relationship in FAN, and form some suspect clue

chains; (c) Rank these chains based on dynamically adjusted

scoring rules. In the evaluation part, top-k clue chains will

be recommended to financial institutions to assist in detecting

anomalies effectively.

VII. EXPERIMENTS

We show the efficiency and effectiveness of our approach.

More importantly, we developed an anomaly-detection system,

called Themis, to detect abnormal activities. The interface of

Themis and case studies are also presented. We conducted all

the experiments on a machine with an Intel(R) Core(TM) i7-

10710U and 16GB memory in Windows OS. All the methods

are implemented in C++ compiled by g++ with O3 turned on.

All the detection algorithms are run in memory.

A. Datasets
Synthetic dataset: In order to evaluate the performance of

Themis in detecting anomalies, we apply an existing graph

generator, Watts-Strogatz1 to generate the background finan-

cial graph and relative network, including 1, 000 nodes and

993, 133 edges. Then abnormal patterns are inserted into the

graph as the ground truth to evaluate our anomaly detection

algorithms, clue chains trancing technology, and Themis.

Real bank statements: To further evaluate the performance

of Themis in real-world scenarios, some financial activities

of a bank are utilized as a benchmark dataset in our exper-

iments, including 110, 509 transfer records and 47 features.

We provide a brief description of this dataset as follows,

including the bank statement (transaction amount, transaction

category, etc.), cardholder-related information (name, card

number, identification number, etc.), counterparty information

(account, ID number, etc.), and relative relationships.

New arrival activities: Based on the synthetic dataset, we

generate 100 new nodes and 500 new edges with a sorted

time stamp to simulate newly generated financial activities.

The distribution of generated time stamps follows the same

time distribution in the financial graph.

1https://github.com/sleepokay/watts-strogatz
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(a) Trigger-base detection. (b) Monitor-based detection. (c) Mining-based detection.

Fig. 6: Performance of detection algorithms on a synthetic dataset.

B. Evaluation of anomaly detecting algorithms

Anomalies analysis on synthetic datasets. Fig. 6 shows

the performance of three detection algorithms on synthetic

datasets with different data sizes. We record the average

number of detected anomalies and detection time for each

new arrival activity for AA1-AA8, and the number of detected

anomalies and detection time for AA9-AA10.

Fig. 6(a) shows that the average number of anomalies using

trigger-based detection is small and independent from the data

size because most of the incoming activity is normal and only

related to the distribution of incoming activities. The average

detection time is constant for every new arrival activity. The

results in Fig. 6(b) show that the monitor-based detection

algorithms have good scalability for detecting anomalies. The

number of detected anomalies and the detection time increase

linearly with the increase in dataset size. Fig. 6(c) shows the

results of mining-based detection. When increasing the size

of the dataset, the number of detected anomalies increases

linearly for AA9 and quadratically for AA10 since we want

to find every One-Way-Transfer pair in FAN. Mining-based

detection requires more time since the complexity of the

mining-based detection for AA9 is O(|E|2) and for AA10 is

O(|V |2|E|).
Anomalies analysis on real bank statements. Fig. 7 (a)

demonstrates the proportion of abnormal patterns detected

in real bank statements. Obviously, these anomalies are sig-

nificantly rare compared with normal activities. Tracing the

suspicious clue chains based on anomalies can improve the

efficiency of institutions. Fig. 7 (b) shows the funding-amount-

fluctuation anomalies detected, indicating that most customers’

transferring amount is positively correlated with their historical

transaction amount, and only a small part of users have

funding-amount-fluctuation anomalies.

C. Evaluation of “clue chains Tracing Algorithms”

1) Efficiency: In this part, we show the efficiency of clue

chain tracing in real bank statements.

(a) Proportion of anomalies.
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(b) Funding-Amount-Fluctuation.

Fig. 7: Statistics of anomalies on real bank statements.

TABLE II: Number of chains for individual accounts.

Alice Bob Charlie David Emma

Total number of chains 3,975 11,313 11,654 1,576 7,029
Chains (εt=6,εa=$10,000) 217 503 179 47 219
Chains (εt=1,εa=$10,000) 15 21 8 3 9

Verification benefit for individual accounts. Table II demon-

strates the number of chains for a specific account of a person.

“Total number of chains” is the account’s total financial

clues, i.e., the account of David has 1, 576 transaction-related

chains, which should be checked by financial institutions

manually before using Themis. In particular, Chains (εt, εa)

is the number of clue chains traced by Themis under a

given time interval εt and amount threshold εa (months and

dollars), then top-k chains are recommended to institutions to

verify manually (top-10 chains in Themis). For example, the

institutions only need to check 47 and 3 suspect chains about

David after deploying Themis under the threshold of (εt = 6
and εa = $10, 000) and (εt = 1 and εa = $10, 000), improving

the efficiency compared with previous verification.

Verification benefit for anomalies. Table III shows the

average number of clue chains and their running time. It shows

that when the time interval extends from one month to six

months, more suspicious clues appear. The financial institution

could use these two parameters to trace the clue chain easily.
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Fig. 8: Case studies: clue chains detected by our system Themis.

a. Relation Tracing

b. Relation Tracing with 
Abormal Link

c. The Personal Financial Overview

Mr.x

Liu#Feng

d. Personnel Funds Link

Fig. 9: Interface-Diagram of Themis.

TABLE III: Performance of chains for anomalies.

AA4 AA5 AA8 AA9 AA10

Average number of chains 17,647 537 8,673 2,130 47,586

Chains (εt=6,εa=$10,000) 425 64 328 165 760
Time (εt=6,εa=$10,000) 2.87s 1.25s 2.67s 0.78s 3.18s

Chains (εt=1,εa=$10,000) 200 45 229 121 521
Time (εt=1,εa=$10,000) 1.66s 0.99s 1.54s 0.61s 2.56s

Performance. Table III demonstrates the average running time

(seconds) of clue chain generation in Themis, including the

process of tracing, evaluating, and recommending chains. We

can find that the process of clue chain inference is significantly

efficient (all in seconds level), supporting anomaly detection

in large-scale bank statements.

2) Effectiveness: We conduct some case studies of clue

chains generated by Themis, whose anomalies have been

verified by institutions. In fig. 8, the node represents a person’s

account, and the edge denotes financial activities between two

accounts where the activities with solid lines are anomalies

traced and the activities with the dashed line are inferred via

the account’s deposits and withdrawals.

Case 1 (Clue chain detected by tracing AA5): As shown

in Fig. 8(a), Hz is Lc’s driver. He is detected as funding-

amount fluctuation by using “Themis”. These activities sig-

nificantly exceed Hz’s income level ($5, 000 monthly salary).

Our approach traces Hz’s transactions and recommends this

suspicious clue chain. In this anomaly (AA5), Hz transferred

massive money to Lc and Ys.

Case 2 (Clue chain detected by tracing AA8): As shown in

Fig. 8(b), our algorithms detect that Hz acts as an intermediary

and receives two cash deposits from Sx and Yt respectively.

Then Hz transferred the money to Ly and his other account in

a short period of time. Our approach traces that he successfully

transfers from Sx and Yt to Lc and Ys as an intermediary.

Case 3 (Clue chain detected by tracing AA4 and AA8):
Fig. 8(c) demonstrates a clue chain that tracks where $400, 000
comes from and what is it used for. $388, 000 was spent by

Lc in a luxury shop at the end.

D. Themis: An anomaly-detection system

More importantly, we developed an anomaly-detection sys-

tem (Themis) that can detect anomalies from disguised normal

financial activities and find suspicious clue chains. It has

been deployed in many real scenarios, including banks and

financial institutions. The pipeline of Themis is demonstrated

as follows: (a) Anomalies are detected by “Anomaly Detecting

Algorithm”; (b) Suspect clue chains are traced based on

anomalies via “clue chains Tracing Algorithms”; (c) Themis

evaluates and recommends suspicious clue chains to institu-

tions. The interface of Themis is shown in Fig. 9, including

individuals’ assets, bank statements, cash transactions, rela-

tive relationships, and so on. With the help of Themis, the

anomalies (red solid lines in Fig. 9(b)) can be detected.
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VIII. CONCLUSION

In this paper, we design a uniform framework to detect

anomalies from disguised normal financial activities. We are

the first to formalize and detect complex anomalies, meanwhile

considering heterogeneous features. In particular, we propose

a clue chain tracing technology to recommend suspect clue

chains for institutions. What’s more, we deploy a system,

Themis, to detect anomalies and infer clue chains in some

real scenarios. Experiments on synthetic datasets and real bank

statements show the efficiency and effectiveness of the Themis.

IX. ACKNOWLEDGEMENTS

The work is partially supported by the National Natural

Science Foundation of China (Nos. U22A2025, 62072088,

62232007), and Liaoning Provincial Science and Technology

Plan Project - Key R&D Department of Science and Technol-

ogy (No. 2023JH2/101300182).

REFERENCES

[1] B. L. Handoko, R. N. A. Putri, and S. Wijaya, “Analysis of fraudulent
financial reporting based on fraud heptagon model in transportation
and logistic industry listed on idx during covid-19 pandemic,” in
International Conference on Software and e-Business, 2022, pp. 56–63.

[2] E. Hytis, V. Nastos, C. Gogos, and A. Dimitsas, “Automated identi-
fication of fraudulent financial statements by analyzing data traces,”
in The South-East Europe Design Automation, Computer Engineering,
Computer Networks and Social Media Conference (SEEDA-CECNSM).
IEEE, 2022, pp. 1–7.

[3] S. Dhankhad, E. Mohammed, and B. Far, “Supervised machine learning
algorithms for credit card fraudulent transaction detection: a comparative
study,” in IEEE international conference on information reuse and
integration (IRI), 2018, pp. 122–125.

[4] J. C. Ying, J. Zhang, C. W. Huang, K. T. Chen, and V. S. Tseng,
“Fraudetector +: An incremental graph-mining approach for efficient
fraudulent phone call detection,” ACM Transactions on Knowledge
Discovery from Data, vol. 12, no. 6, pp. 1–35, 2018.

[5] S. Zhou, J. He, H. Yang, D. Chen, and R. Zhang, “Big data-driven
abnormal behavior detection in healthcare based on association rules,”
IEEE Access, vol. PP, no. 99, pp. 1–1, 2020.

[6] A. C. Kim, W. H. Park, and D. H. Lee, “A framework for anomaly
pattern recognition in electronic financial transaction using moving
average method,” in IT Convergence and Security, 2013, pp. 93–99.

[7] J.-S. Chang and W.-H. Chang, “Analysis of fraudulent behavior strate-
gies in online auctions for detecting latent fraudsters,” Electronic Com-
merce Research and Applications, vol. 13, no. 2, pp. 79–97, 2014.

[8] F. Rahmani, C. Valmohammadi, and K. Fathi, “Detecting fraudulent
transactions in banking cards using scale-free graphs,” Concurrency and
Computation: Practice and Experience, vol. 34, no. 19, p. e7028, 2022.

[9] H. Zhang and W. Zhou, “A two-stage virtual machine abnormal
behavior-based anomaly detection mechanism,” Cluster Computing,
vol. 25, no. 1, pp. 203–214, 2022.

[10] M. Y. Turaba, M. Hasan, N. I. Khan, and H. A. Rahman, “Fraud
detection during financial transactions using machine learning and deep
learning techniques,” in IEEE International Conference on Communica-
tions, Computing, Cybersecurity, and Informatics, 2022, pp. 1–8.

[11] E. E. Papalexakis, A. Beutel, and P. Steenkiste, “Network anomaly de-
tection using co-clustering,” in Encyclopedia of Social Network Analysis
and Mining, 2nd Edition, 2018.

[12] S. Cao, X. Yang, J. Zhou, X. Li, Y. Qi, and K. Xiao, “Poster: Actively
detecting implicit fraudulent transactions,” in The ACM SIGSAC Confer-
ence on Computer and Communications Security, 2017, pp. 2475–2477.

[13] X. Gu and H. Wang, “Online anomaly prediction for robust cluster
systems,” in Proceedings of the 25th International Conference on Data
Engineering, 2009, pp. 1000–1011.

[14] Z. Wang, “Abnormal financial transaction detection via ai technology,”
International Journal of Distributed Systems and Technologies (IJDST),
vol. 12, no. 2, pp. 24–34, 2021.

[15] R. A. L. Torres and M. Ladeira, “A proposal for online analysis and
identification of fraudulent financial transactions,” in IEEE International
Conference on Machine Learning and Applications (ICMLA), 2020.

[16] J. He, C.-C. M. Yeh, Y. Wu, L. Wang, and W. Zhang, “Mining anomalies
in subspaces of high-dimensional time series for financial transactional
data,” in Machine Learning and Knowledge Discovery in Databases.
Applied Data Science Track: European Conference, (ECML PKDD).
Springer, 2021, pp. 19–36.

[17] Y. Li, Y. Sun, and N. Contractor, “Graph mining assisted semi-
supervised learning for fraudulent cash-out detection,” in Proceedings
of the 2017 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining 2017, 2017, pp. 546–553.

[18] X. Mao, M. Liu, and Y. Wang, “Using gnn to detect financial fraud
based on the related party transactions network,” Procedia Computer
Science, vol. 214, pp. 351–358, 2022.

[19] Y. Pei, F. Lyu, W. V. Ipenburg, and M. Pechenizkiy, “Subgraph anomaly
detection in financial transaction networks,” 2020.

[20] D. Wang, Y. Qi, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu,
J. Zhou, and S. Yang, “A semi-supervised graph attentive network for
financial fraud detection,” in 2019 IEEE International Conference on
Data Mining, 2019, pp. 598–607.

[21] W. Kudo, M. Nishiguchi, and F. Toriumi, “Gcnext: graph convolutional
network with expanded balance theory for fraudulent user detection,”
Social Network Analysis and Mining, vol. 10, pp. 1–12, 2020.

[22] S. Pathan and V. Shrivastava, “Identifying linked fraudulent activities
using graphconvolution network,” arXiv:2106.04513, 2021.

[23] X. Wang, Z. Wan, and Y. Zhang, “A dqn-based internet financial fraud
transaction detection method,” in International Conference on Computer
Science and Application Engineering (CSAE), 2021, pp. 1–5.

[24] B. Can, A. G. Yavuz, M. E. Karsligil, and M. A. Güvensan, “A closer
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