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Abstract
As data centers grow larger and strive to provide tight perfor-
mance and availability SLAs, their monitoring infrastructure
must move from passive systems that provide aggregated
inputs to human operators, to active systems that enable pro-
grammed control. In this paper, we propose Trumpet, an
event monitoring system that leverages CPU resources and
end-host programmability, to monitor every packet and report
events at millisecond timescales. Trumpet users can express
many network-wide events, and the system efficiently detects
these events using triggers at end-hosts. Using careful design,
Trumpet can evaluate triggers by inspecting every packet at
full line rate even on future generations of NICs, scale to
thousands of triggers per end-host while bounding packet
processing delay to a few microseconds, and report events
to a controller within 10 milliseconds, even in the presence
of attacks. We demonstrate these properties using an imple-
mentation of Trumpet, and also show that it allows operators
to describe new network events such as detecting correlated
bursts and loss, identifying the root cause of transient conges-
tion, and detecting short-term anomalies at the scale of a data
center tenant.

CCS Concepts
•Networks → End nodes; Network monitoring; Data
center networks;

Keywords
Network Event Monitoring; End-host Monitoring

1. INTRODUCTION
Data center network management tasks range from fault di-

agnosis to traffic engineering, network planning, performance
diagnosis, and attack prevention and require network moni-
toring. Commercial network monitoring tools (e.g., SNMP,
NetFlow) produce highly aggregated or sampled statistics
(e.g., per port count in SNMP, sampled NetFlow records)
at relatively coarse time-scales (seconds to minutes), often
provide input to dashboards designed to present aggregate
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network views to human operators, and require humans to
interpret their output and initiate network control.

As data centers evolve to larger scales, higher speed, and
higher link utilization, monitoring systems must detect events
(such as transient congestion or server load imbalance) more
precisely (inspecting every packet), at fine time-scales (on
the order of milliseconds) and in a programmable fashion
(so that the set of events can be dynamically determined). In
this paper, we argue for a shift of monitoring infrastructure
from passive to active: Instead of presenting aggregated
network views to human operators, monitoring infrastructure
should both allow for interactive drill down based on current
conditions and for automated reaction to pre-defined, fine-
grained packet events at the scope of entire fabrics rather than
individual links or servers.

The challenge in achieving this goal is scale along many
dimensions: the number of endpoints, the high aggregate
traffic in the network, and, as data center networks move to
support large numbers of tenants and services, the number
of events of interest. To address this challenge, we leverage
the relatively plentiful processing power at end-hosts in a
data center. These end-hosts are programmable, already need
to process every packet once, and can monitor all packets
without sampling using their powerful CPUs.
Contributions. In this paper, we present the architecture
and implementation of Trumpet: an event monitoring sys-
tem in which users define network-wide events, a centralized
controller installs triggers at end-hosts where triggers test
for local conditions, and the controller aggregates these sig-
nals and tests for the presence of specified network-wide
events. This architecture demonstrates the benefits of push-
ing, to end-hosts, the substantial scalability challenges faced
by datacenter-scale per-packet monitoring. The key to Trum-
pet’s efficacy is carefully optimized per-packet processing
inline on packets being demultiplexed by a software switch.

We demonstrate the benefits of Trumpet with the following
contributions. First, Trumpet introduces a simple network-
wide event definition language which allows users to define
network-wide events by specifying a filter to identify the
set of packets over which a predicate is evaluated; an event
occurs when the predicate evaluates to true. Users can set a
predicate’s time and flow granularity. Despite this simplicity,
the language permits users to capture many interesting events:
identifying if flows trigger congestion on other flows, when
aggregate traffic to hosts of a service exceeds a threshold, or
when connections experience a burst of packet loss.

Our second contribution is scaling event processing at end-
hosts while still being able to detect events at timescales of
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a few milliseconds. Upon receiving an event definition, the
central controller installs triggers corresponding to events at
end-hosts. A trigger determines whether the user-specified
event has occurred at an end-host; if so, the end-host sends
the trigger’s output to the controller. The controller collects
the trigger results from individual end-hosts to determine if
the event definition has been satisfied across the network. The
key challenge is to support thousands of triggers at full line
rate without requiring extra CPU cores on a software switch,
and without (a) dropping any packet, (b) missing any events,
and (c) delaying any packet by more than a few µs.

To achieve these properties, Trumpet processes packets in
two phases in the end-hosts: A match-and-scatter phase that
matches each incoming packet and keeps per 5-tuple flow
statistics; and a gather-test-and-report phase which runs at
each trigger’s time granularity, gathers per-trigger statistics,
and reports when triggers are satisfied. We also design and
implement a suite of algorithms and systems optimizations in-
cluding caching to reduce computation, pre-fetching and data
structure layout to increase memory access efficiency, careful
use of virtual memory, and a queue-length adaptive schedul-
ing technique to steal cycles from packet processing. Our
design degrades gracefully under attack, and scales naturally
to higher-speed NICs likely to be deployed in datacenters in
the next few years.

Our third contribution is an evaluation of Trumpet across
a variety of workloads and event descriptions. We evaluated
Trumpet running on a single core with 4K triggers and (a)
64-byte packets on a 10G NIC at line rate and (b) 650-byte
packets on a 40G NIC at line rate. Trumpet sustains this
workload without packet loss, or missing a single event. More
generally, we characterize the feasible set of parameters, or
the feasibility region, in which Trumpet finishes every sweep,
and never loses a packet. Each of our optimizations provides
small benefits, but because at full line-rate we have almost no
processing headroom, every optimization is crucial. Trumpet
can report network-wide events within 1ms after the first
trigger is matched at one end-host. Its matching complexity
is independent of the number of triggers, a key reason we
are able to scale the system to large numbers of triggers.
Finally, Trumpet degrades gracefully under attack: with the
appropriate choice of parameters (which can be determined
by an accurate model), it can sustain a workload in which
96% of the packets are DoS packets, at the expense of not
being able to monitor flows of size smaller than 128 bytes.

Fourth, we demonstrate the expressivity of Trumpet with
three use cases: a) pacing traffic, using a tight control loop,
when that traffic causes a burst of losses; b) automatically
identifying flows responsible for transient congestion and
c) detecting, using a network-wide event, services whose
combined volume exceeds a threshold.

Getting precise and accurate visibility into data centers is
a crucial problem, and Trumpet addresses an important part
of this space. In practice, a spectrum of solutions is likely
to be necessary, including approaches (Section 8) that use
NICs and switches. NIC offloading saves end-host CPU and
can monitor the flows that bypass the hypervisor (e.g., using
SR-IOV and RDMA). Other schemes that mirror packets

or packet headers to a controller, where an operator or a
script can examine headers or content, can help drill down
on events triggered by Trumpet. As an aside, these schemes
might need to process packets at high rates at the controller,
and Trumpet’s processing optimizations might be applicable
to these.

2. THE CASE FOR TRUMPET
Today’s monitoring infrastructure is designed for human

monitoring, so coarse time scales and high levels of aggre-
gation are sufficient. Modern data centers need real-time,
fine-grained, and precise monitoring to feed a variety of con-
trol systems. In this section, we elaborate on this observation,
which motivates the design of Trumpet.
Problems of today’s monitoring systems. Network man-
agement systems in data centers rely on detecting network
events. An event often indicates a network condition that
may require a corrective action, mostly through a computer-
assisted reaction. Events are often defined in terms of packets
dropped, delayed, or delivered by the network, and can range
in topological scope from a specific flow, to traffic aggregates
(e.g., all network traffic to a service), and in temporal scope
from being extremely short-lived to long-lived events.

Traditional monitoring systems only provide coarse-
grained views of the network at larger time scales, which
are sufficient for humans to understand network state, but
may be insufficient to capture events precisely or at fine
time-scales. For example, SNMP provides per port counters
every few minutes, too coarse-grained for traffic engineering
or performance diagnosis. OpenFlow provides counters
for aggregated flows (due to limited TCAM sizes [40])
and reports the updated counters every few seconds [13,
46], which cannot capture sub-second traffic events. sFlow
[54] uses packet sampling which cannot capture transient
events (e.g., transient packet losses), track connection states
(e.g., congestion window), and correctly estimate link load
[48]. These shortcomings in monitoring systems can lead
to significant loss of network availability: a traffic surge
in Google’s Compute Engine was detected 3 minutes after
causing 90% packet loss between two regions [22].

Moreover, today’s monitoring systems do not scale well
to larger networks with higher capacities and higher utiliza-
tion. Higher link speed and larger scales mean more packets
to monitor; higher network utilization requires more timely
event reporting, because delayed reports of an outage can
affect larger traffic volumes. Unfortunately, higher utiliza-
tion also leaves fewer network resources for monitoring. For
example, the reporting frequency of OpenFlow counters is
inversely proportional to the number of connections managed
(increasing new connections from 150 to 250 per second re-
quires reducing reporting frequency from once per second
to once per 5 seconds [13]). As a result, the precision of a
network monitoring system can suffer at higher scales and
utilization and therefore adversely impact the goal of achiev-
ing service level objectives and high utilization, especially in
data center networks.
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Data centers need precise, fine time-scale event monitor-
ing. Data centers need novel kinds of event monitoring ca-
pabilities to capture a variety of network misbehaviors (e.g.,
misconfiguration, transient looping, anomalies, drops) and as
input for network management decisions (e.g., traffic engi-
neering, load balancing, VM migration). We describe a few
examples here and list more in Section 3.
Identify losses caused by traffic bursts. Traffic bursts are com-
mon in data centers and can improve application performance
[23, 58]. For example, NIC offloading [31] sends packets in
batches to reduce processing overhead, and distributed file
systems read and write in bulk to maximize disk throughput.
However, bursty traffic may cause losses when they traverse
shallow buffered switches [51], which significantly affects
application performance. To improve performance, it may
be necessary to detect lost packets (e.g., by retransmissions)
and packets in bursts (e.g., by tracking packet timestamps),
and identify their correlations (e.g., by correlating packet se-
quence numbers). All these detections are not possible using
packet sampling or flow level counters.
Identify root cause of congestion. Transient network conges-
tion (e.g., incast [8]) is hard to diagnose. For example, a
MapReduce reducer may see significant performance degra-
dation caused by network congestion, even though its aggre-
gate demand may be well below switch capacity. This is
because another application sending through the same switch
can trigger transient incast losses, increasing the reducer’s
processing time and therefore the job finish time. Such con-
gestion is often caused by short bursts of traffic at short
timescales (10 ms). This may not be detectable on aggregate
counters in today’s switches (which have > 1s granularity).
To diagnose this behavior, it is important to identify TCP
flows with high loss and correlate them with heavy hitters
going through the bottleneck.
Monitor server load balance and load burst. Maintaining the
service-level agreements (SLAs) for different applications
requires careful provisioning and load balancing in cloud ser-
vices [44] because imperfect load balance and short request
bursts can lead to long tail latency [28, 26]. A good way to
track service load is to monitor the network traffic [5]. If we
can identify volume anomalies in short timescales, we can
identify inefficient load balancing across servers, provision-
ing issues or DDoS attacks on some servers. For example,
operators can query whether the long tail latency is because
the service sees bursts of requests, or more than 50% of VMs
of a service see a traffic surge as a result of a DDoS attack.
Trumpet. These kinds of event detection are beyond the
capabilities of today’s deployed systems. In this paper, we
consider a qualitatively different point in the design space
of monitoring systems. We ask: Does there exist a design
for a monitoring system which can detect and report thou-
sands of events within a few milliseconds, where event detec-
tions are precise because the system processes every packet
(rather than, say, sampling), and event specifications can be
flexible (permitting a range of spatial and temporal scopes
of event definition)? Such a monitoring system would be
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Figure 1: Flow granularity in Trumpet event definition
especially useful for automatic diagnosis and control at mil-
lisecond timescales on timely reporting of traffic anomalies,
fine-grained flow scheduling, pacing, traffic engineering, VM
migration and network reconfigurations.

3. DEFINING EVENTS IN TRUMPET
Users of Trumpet define events using a variant of a match-

action language [38], customized for expressing events rather
than actions. An event in this language is defined by two
elements: a packet filter and a predicate. A packet filter
defines the set of packets of interest for the specific event,
from among all packets entering, traversing, or leaving a data
center (or part thereof) monitored by Trumpet. Filters are ex-
pressed using wildcards, ranges or prefix specifications on the
appropriate packet header fields. If a packet matches multiple
filters, it belongs to set of packet for each of the correspond-
ing events. A predicate is simply a Boolean formula that
checks for a condition defined on the set of packets defined
by a packet filter; when the predicate evaluates to true, the
event is said to have occurred. A predicate is usually defined
over some aggregation function expressed on per-packet vari-
ables; users can specify a spatio-temporal granularity for the
aggregation.
Elements of the event definition language. Each packet in
Trumpet is associated with several variables. Table 1 shows
the variables used for use cases discussed in this paper. It is
easy to add new variables, and we have left an exploration of
the expansion of Trumpet’s vocabulary to future work.

The predicate can be defined in terms of mathematical
and logical operations on these variables, and aggregation
functions (max, min, avg, count, sum, stddev) of these
variables. To specify the granularity at which the aggregation
is performed, users can specify (a) a time_interval
over which the predicate is to be evaluated, and (b) a
flow_granularity that specifies how to bucket the
universe of packets, so that the aggregation function is
computed over the set of packets in each bucket within the
last time_interval.

The flow_granularity can take values such as
5-tuple1 or any aggregation on packet fields (such as
srcIP,dstIP and srcIP/24). Figure 1 shows two exam-
ples of counting the volume of four flows at two different
flow granularities (srcIP,dstIP and srcIP/24). At
srcIP,dstIP granularity, the first two flows are bucketed
15-tuple fields include source and destination IP, source and destination
port, and protocol. Although all examples here use 5-tuple, Trumpet flow
granularity specifications can include other packet header fields (e.g., MAC,
VLAN).
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Variable Description 
volume the size in bytes of the packet payload 
ecn if the packet is marked with ECN 
rwnd the actual receiver advertised window 
ttl the packet’s time-to-live field 
rtt the packet round-trip time (as measured from the returning ACK) 
is_lost if the packet was retransmitted at least once 
is_burst if the packet occurred in a burst (packets from a flow with short inter-arrival time) 
ack latest ack 
seq maximum sequence number 
dup an estimate of the number of bytes sent because of duplicate acks 

  
  

Table 1: Packet variables

Example Event 
Heavy flows to a rack with IP range 10.0.128.0/24 dstIP=10.0.128.0/24, sum(volume)>125KB, 5-tuples, 10ms 
Large correlated burst & loss in any flow of a service on 10.0.128.0/24 srcIP=10.0.128.0/24, sum(is_lost & 

is_burst)>10%, 5-tuples, 10ms 
Congestion of each TCP flow Protocol=TCP, 1 - (ack - ack_lastepoch + 

dup) / (seq_lastepoch - 
ack_lastepoch) >0.5, 5- tuples, 10ms 

Load spike on a service at 10.0.128.0/24 port:80 (dstIP=10.0.128.0/24 and dstPort=80), sum(volume)>100MB, dstIP/24, 10ms 
Reachability loss between service A on 10.0.128.0/24 to B 10.20.93.0/24 (srcIP=10.0.128.0/24 and dstIP=10.20.93.0/24), sum(is_lost)>100, (srcIP and dstIP), 10ms 
Popular service dependencies for a tenant on 10.0.128.0/20 srcIP=10.0.128.0/20, sum(volume)>10GB, (dstIP/24 and srcIP/24), 1s 

 Table 2: Example Event definitions (Filter, Predicate, Flow_granularity, Time_interval)

together, while the third flow is in a separate bucket. At
srcIP/24 granularity, the first three flows are placed in
the same bucket. The flow_granularity specification
makes event descriptions much more concise. For example,
to find chatty VM pairs in a service, the operator can
define an event at the granularity of srcIP,dstIP without
needing to explicitly identify the actual IP addresses of the
communicating pairs. In some cases, these IP addresses may
not be known in advance: e.g., all the users of a datacenter
internal service. Additional examples of event definitions
with different flow_granularity are given below.
Example event definitions. Table 2 gives examples of some
event definitions, based on the discussion in Section 2.

The first example is to find heavy hitter flows that send a
burst of packets to a rack (say 10.0.128.0/24). The user
of Trumpet would define the IP block as the filter, define a
predicate that collects the total number of bytes and checks
if the sum exceeds a threshold (say 125 KB as 10% of a
1G link capacity) in a 10 ms time interval and 5-tuple flow
granularity. Notice that this event definition is expressed at
the scale of a rack (say 10.0.128.0/24), and can flag any
5-tuple flow whose behavior matches the predicate.

The second example detects a large correlated burst of
losses in any flow of a service whose servers use a given IP
block (say 10.0.128.0/24). The user defines a predicate
that counts the number of packets for which is_lost2 and
is_burst [31] is simultaneously true and checks when the
count passes the threshold (the predicate is shown in Table 2).
Events with flow_granularity definitions over multiple
flows can be used for coflow scheduling [9], guiding SDN rule
placement [41] and estimating the demand of FlowGroups
for rate limiting [33].

The next event in the table detects when a TCP connec-
tion experiences congestion. Specifically, the event predicate
checks if a connection does not receive most of the acks for

2The number of retransmissions over-estimates the number of lost packets.
A more accurate solution is more complex and needs careful RTO estima-
tion [3]

which it was waiting from the beginning of a measurement
epoch whose duration is the time_interval of the predi-
cate. This event tracks seq, ack and dup3 variables for all
TCP flows in both directions for the current and previous
epochs. It computes the size of acked bytes in the current
epoch using the ack and dup of the other side of connection
and compares it against outstanding bytes in the last epoch
based on the ack and seq. Similar events can be used to de-
tect the violation of bandwidth allocation policies [4] at short
timescales, debug new variants of TCP congestion control
algorithms, and detect unresponsive VMs to ECN marks and
RTT delays.

A slightly different example (the fourth in Table 2) detects
if there is a load spike on a distributed service (as defined
by an IP address block 10.0.128.0/24). In this example,
the predicate evaluates to true if the total volume of traf-
fic to all destination servers within this IP block over a 10
ms time interval exceeds this threshold. For this event, the
flow_granularity is dstIP/24: the whole service. 4

Beyond the above examples, Trumpet can also be used on
other management tasks such as: (a) diagnosing reachability
problems between the VMs of two services by counting the
total packet losses among any source and destination pair
(similar queries can find black holes [23, 58] and transient
connectivity problems in middleboxes [47]) and (b) finding
popular service dependencies of a tenant by checking if any
set of servers in a specific source IP/24 collectively send
more than 10GB per second of traffic to a set of servers in a
destination IP/24 (a service IP range) (useful, for example, to
migrate their VMs to the same rack [27] or put load balancing
rules on ToRs with chatty services [19]).

3Duplicate acks show that a packet is received although it is not the one ex-
pected. dup increases by 1460 bytes for each dup-ack and decreases based
on acked bytes for each regular ack.
4To IP addresses of a service cannot be expressed in a single range, Trumpet
allows event specifications with multiple filters.
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4. AN OVERVIEW OF TRUMPET
Trumpet is designed to support thousands of dynamically

instantiated concurrent events which can result in thousands
of triggers at each host. For example, a host may run 50
VMs of different tenants each communicating with 10 ser-
vices. To support different management tasks (e.g., account-
ing, anomaly detection, debugging, etc.), we may need to
define triggers on 10 different per-packet variables (e.g., in
Table 1) and over different time-intervals and predicates.

Trumpet consists of two components (Figure 2): the Trum-
pet Event Manager (TEM) at the controller and a Trumpet
Packet Monitor (TPM) at each end-host.

Users submit event descriptions (Section 3) to the TEM,
which analyzes these descriptions statically and performs
the following sequence of actions. First, based on the filter
description and on network topology, it determines which
end-hosts should monitor the event. Second, it generates
triggers for each end-host and installs the triggers at the TPM
at each host. A trigger is a customized version of the event
description that includes filters and predicates in flow and
time granularity. However, the predicate in a trigger can
be slightly different from the predicate in the corresponding
event definition because the event description may describe
a network-wide event while a trigger captures a host local
event. Third, TEM collects trigger satisfaction reports from
host TPMs. TPMs generate satisfaction reports when a trigger
predicate evaluates to true. For each satisfied trigger, TEM
may poll other TPMs that run triggers for the same event in
order to determine if the network-wide predicate is satisfied.

An important architectural question in the design of Trum-
pet is where to place the monitoring functionality (the TPMs).
Trumpet chooses end-hosts for various reasons. Other ar-
chitectural choices may not be as expressive or timely. In-
network packet inspection using measurement capabilities at
switches lack the flexibility to describe events in terms of per-
packet variables; for example, it is hard to get visibility into
variables like loss, burst, or RTT at the granularity of individ-
ual packets since switches see higher aggregate traffic than
end-hosts. Alternatively, sending all packets to the controller
to evaluate event descriptions would result in significantly
high overhead and might not enable timely detection.

Trumpet’s TPM monitors packets in the hypervisor where
a software switch passes packets from NICs to VMs and
vice versa. This choice leverages the programmability of
end-hosts, the visibility of the hypervisor into traffic entering
and leaving hosted VMs, and the ability of new CPUs to
quickly (e.g., using Direct Data I/O [30]) inspect all pack-
ets at fine time-scales. Finally, Trumpet piggybacks on the
trend towards dedicating CPU resources to packet switching
in software switches [24]: a software switch often runs all
processing for each packet in a single core before sending
the packet to VMs because it is expensive to mirror packets
across cores due to data copy and synchronization overhead
[14]. For exactly the same reason, and because it needs com-
plete visibility into all traffic entering or leaving a host, TPM
is co-located with the software switch on this core. This trend
is predicated on increasing core counts in modern servers.

Controller

Server

VM

Server

Trumpet Event Manager (TEM)

Install

triggers

Satisfied

triggers

Network-wide

query

VMHypervisor

Software switch

Packet

Server

Trumpet Packet Monitor 

(TPM)

Figure 2: Trumpet system overview
Trumpet is designed for data centers that use software

packet demultiplexing, leveraging its programmability for
supporting complex event descriptions, extensibility to new
requirements, and resource elasticity to handle load peaks.
However, Trumpet can also be used in two ways in data cen-
ters where the NIC directly transfers traffic to different VMs
(e.g., using kernel bypass, SR-IOV, or receive-side scaling).
The first is mirroring traffic to the hypervisor. New NICs
allow mirroring traffic to a separate queue that is readable
by the hypervisor, using which Trumpet can evaluate trigger
predicates. Although this has CPU overhead of processing
packets twice (in the hypervisor and VMs), this still preserves
the goal of reducing packet latency at VMs. Moreover, be-
cause trigger evaluation is not on the packet processing path,
Trumpet is not constrained by bounds on packet delay, so
it may not need a dedicated core. We have evaluated Trum-
pet with the mirroring capability in Section 7.2. The second
is NIC offloading. With the advent of FPGA (e.g., Smart-
NIC[17]) and network processors at NICs [6], Trumpet can
offload some event processing to NICs. For example, it can
offload trigger filters in order to selectively send packet head-
ers to the hypervisor. As NIC capabilities evolve, Trumpet
may be able to evaluate simpler predicates within the NIC,
leaving CPU cores free to perform even more complex pro-
cessing tasks (e.g., understanding correlations across multiple
flows) for which some of our techniques will continue to be
useful.

Trumpet also depends upon being able to inspect packet
headers, both IP and TCP, so header encryption could reduce
the expressivity of Trumpet.

The design of both TPM and TEM present significant chal-
lenges. In the next two sections, we present the design of
these components, with a greater emphasis on the systems
and scaling challenges posed by precise and timely measure-
ment at the TPM. We also discuss the design of TEM, but a
complete design of a highly scalable TEM using, for example,
techniques from [45, 58], is beyond the scope of this paper.

5. TRUMPET PACKET MONITOR
The primary challenge in Trumpet is the design of the

Trumpet Packet Monitor (TPM). TPM must, at line rate: (a)
determine which trigger’s filter a packet matches, (b) update
statistics of per-packet variables associated with the trigger’s
predicate and (c) evaluate the predicate at the specified time
granularity, which can be as low as 10 milliseconds. For a
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10G NIC, in the worst-case (small packet) rate of 14.8 Mpps,
these computations must fit within a budget of less than 70ns
per packet, on average.

5.1 Design Challenges
The need for two-phase processing. Our event definitions
constrain the space of possible designs. We cannot perform
all of the three steps outlined above when a packet is re-
ceived. Specifically, the step that checks the predicate must
be performed at the specified time-granularity. For instance,
a predicate of the form (#packets for a flow during 10ms is
below 10), can only be evaluated at the end of the 10ms inter-
val. Thus, TPM must consist of two phases: a computation
that occurs per-packet (phase one), and another that occurs at
the predicate evaluation granularity (phase two). Now, if we
target fine time-scales of a few milliseconds, we cannot rely
on the OS CPU scheduler to manage the processing of the
two phases because scheduling delays can cause a phase to
exceed the per-packet budget discussed above. Hence, Trum-
pet piggybacks on the core dedicated to software switching,
carefully managing the two phases as described later.
Strawman Approaches. To illustrate the challenges under-
lying the TPM design, consider two different strawman de-
signs: (a) match-later, in which phase one simply records
a history of packet headers and phase two matches packets
to triggers, computes statistics of per-packet variables and
evaluates the predicate, and (b) match-first, in which phase
one matches each incoming packet to its trigger and updates
statistics, and phase two simply evaluates the predicate.

Neither of these extremes performs well. With 4096 trig-
gers each of which simply counts the number of packets from
an IP address prefix at a time-granularity of 10ms, both op-
tions drop 20% of the packets at full 10G packet rate of 14.8
Mpps. Such a high packet rate at a server is common in NFV
applications [16], at higher bandwidth links and in certain
datacenter applications [36]. A monitoring system cannot
induce loss of packets destined to services and applications,
and packet loss also degrades the efficacy of the monitoring
system itself, so we consider these solutions unacceptable.
Moreover, these strawman solutions do not achieve the full
expressivity of our event definitions: for example, they do
not track losses and bursts that require keeping per flow state
(Section 3). Modifying them to do so would add complexity,
which might result in much higher losses at line rates.
Design Requirements. These results and the strawman de-
signs help identify several requirements for TPM design.
First, both match-first and match-later, even with a state-of-
the-art matching implementation, induce loss because the
overhead of matching the packet to a filter often exceeds
the 70ns budget available to process a single packet at the
rate of 14.8 Mpps 64-byte packets on a 10G NIC. This im-
plies that more efficient per-packet processing (phase one) is
necessary. We also impose the requirement that the system
should degrade gracefully under DoS attacks, since an attack
can disrupt monitoring and attacks on cloud providers are
not uncommon [39]. Moreover, with match-first, any delay
in processing a packet will add queueing delay to process-

ing subsequent packets: a monitoring system should, ideally,
impose small and bounded delay.

Second, we observed that match-first scales worse than
match-later because it incurs 3× higher TLB and 30% higher
cache misses (match-later exhibits much more locality be-
cause it performs all packet related actions at once). Thus,
cache and TLB efficiency is a crucial design requirement for
being able to scale trigger processing to full line rate.

5.2 Our Approach
In Trumpet, TPM splits the monitoring functions into the

following two phases: (a) Match and scatter in which in-
coming packets are matched to a 5-tuple flow5 (the finest
flow_granularity specification allowed), which stores
per packet counts/other statistics per flow (this scatters statis-
tics across flows), and (b) Gather-test-and-report, which runs
at the specified trigger time granularity, gathers the statistics
to the right flow_granularity, evaluates the predicate and
reports to TEM when the predicate evaluates to true.

Partitioning the processing in this manner enables Trumpet
to satisfy the requirements discussed in the previous subsec-
tion:

• As we discuss below, this partitioning permits the design
of data structures that promote cache and TLB efficiency,
which, as we discuss above, is crucial for performance. Fur-
thermore, the balance of CPU overhead between the two
phases permits efficient packet processing, without com-
promising expressivity: in the first phase, we can minimize
matching overhead by caching lookups.
• Small and bounded delays can be achieved by co-

operatively scheduling these phases (which avoids
synchronization overhead): the second phase is queue-
adaptive and runs only when the NIC queue is empty.
• Match and scatter per 5-tuple flows allows us to track per

flow statistics such as loss and burst and separating that
from the gather-test-and-report phase let us compute the
statistics once and share these among multiple triggers
matching the same flow, but at different flow granularities.
• This partitioning also localizes the two processing bot-

tlenecks in the system: packet processing and gathering
statistics. As we discuss later, this allows us to design
safeguards for the system to degrade gracefully under at-
tacks, avoiding packet loss completely while maintaining
the fidelity of statistics gathering.

5.3 Data Structures in Trumpet
Trumpet uses four data structures (Figure 3): a flow table

to store statistics of per-packet variables for the flow, a trigger
repository contains all the triggers, a trigger index for fast
matching, and a filter table for DoS-resilience. We describe
the latter two data structures in detail later.

The flow table is a hash table, keyed on the flow’s 5-tuple,
that keeps, for each flow, only the statistics required for the
triggers that match the flow (Figure 3). Thus, for example, if
5Unlike match-first, which matches against triggers defined at multiple
granularities.
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Figure 3: Two-stage approach in Trumpet
a flow only matches a single trigger whose predicate is ex-
pressed in terms of volume (payload size), the flow table does
not track other per-packet variables (loss and burst, round-trip
times, congestion windows, etc.). The variables can be shared
among triggers, and the TEM tells the TPM which variables
to track based on static analysis of event descriptions at trig-
ger installation. The flow table maintains enough memory to
store most per-packet statistics, but some, like loss and burst
indicators are stored in dynamically allocated data structures.
Finally, the TPM maintains a statically allocated overflow
pool to deal with hash collisions. The trigger repository not
only contains the definition and state of triggers, but also
tracks a list of 5-tuple flows that match each trigger. In a later
section, we discuss how we optimize the layout of these data
structures to increase cache efficiency.

Algorithm 1: Processing packets in Trumpet

1 Function processPackets(packetBatch)
2 foreach Packet p do
3 prefetch(p)
4 foreach Packet p do
5 if p.flow != lastpacket.flow then
6 p.hash = calculateHash()
7 prefetchFlowEntry(p)
8 foreach Packet p do
9 if p.flow != lastpacket.flow then

10 e = flowTable.find(p)
11 if e == NULL then
12 e = flowTable.add(p)
13 triggers = triggerMatcher.match(p)
14 e.summaryBitarray =

bitarray(triggers.summaries.id)
15 if e.lastUpdate < epoch then
16 e.resetSummaries()
17 e.updateSummaries(p)
18 forwardPacket(p)

5.4 Phase 1: Match and Scatter
In this phase, Algorithm 1 runs over every packet. It looks

up the packet’s 5-tuple in the flow-table and updates the
per-packet statistics. If the lookup fails, we use a matching
algorithm (lines 11-14) to match the packet to one or more
triggers (a flow may, in general, match more than one trigger).
Fast trigger matching using tuple search. Matching
a packet header against trigger filters is an instance of
multi-dimensional matching with wildcard rules. For this,
we build a trigger index based on the tuple search algorithm

[52], which is also used in Open vSwitch [46]. The tuple
search algorithm uses the observation that there are only
a limited number of patterns in these wildcard filters (e.g.,
only 32 prefix lengths for the IP prefix). The trigger index
consists of multiple hash tables, one for each pattern, each
of which stores the filters and the corresponding triggers for
each filter. Searching in each hash table involves masking
packet header fields to match the hash table’s pattern (e.g.,
for a table defined on a /24 prefix, we mask out the lower 8
bits of the IP address), then hashing the result to obtain the
matched triggers. Tuple search memory usage is linear to the
number of triggers, and its update time is constant.
Performance Optimizations. Since packet processing im-
poses a limited time budget, we use several optimizations
to reduce computation and increase cache efficiency. For
performance, software switches often read a batch of packets
from the NIC. When we process this batch, we use two forms
of cache prefetching to reduce packet processing delay: (1)
prefetching packet headers to L1 cache (lines 2-3) and (2)
prefetching flow table entries (lines 4-7). Data center appli-
cations have been observed to generate a burst of packets on
the same flow [31], so we cache the result of the last flow
table lookup (lines 5, 9). To minimize the impact of TLB
misses, we store the flow table in huge pages. In Section 7, we
demonstrate that each optimization is critical for Trumpet’s
performance.

5.5 Phase 2: Gather, Test, and Report
This phase gathers all statistics from the flow table entries

into the flow_granularity specified for each trigger (re-
call that the flow-table stores statistics at 5-tuple granularity,
but a trigger may be defined on coarser flow granularities,
like dstIP/24). Then, it evaluates the predicate, and reports
all the predicates that evaluate to true to the TEM.

The simplest implementation, which runs this entire phase
in one sweep of triggers, can result in large packet delays or
even packet loss, since packets might be queued or dropped
in the NIC while this phase is ongoing. Scheduling this phase
is one of the trickier aspects of Trumpet’s design.

At a high-level, our implementation works as follows.
Time is divided into epochs of size T , which is the great-
est common factor of the time granularities of all the triggers.
Trumpet supports a T as small as 10 milliseconds. In each
flow table entry, we double-buffer the statistics (like volumes,
loss, burst, etc.): one buffer collects statistics for the odd-
numbered epochs, another for even-numbered epochs. In the
i-th epoch, we gather statistics from the i−1-th epoch. Thus,
double-buffering gives us the flexibility to interleave trigger
sweeps with packet processing.

We schedule this gathering sweep in a queue-adaptive
fashion (Algorithm 2). When the NIC queue is empty, we
run a sweep step for a bounded time (Algorithm 3). Because
of Trumpet’s careful overall design, it is always able to stay
ahead of incoming packets so that these sweeps are never
starved (Section 7). This bound determines the delay imposed
by the measurement system, and can be configured. In our
experiments, we could bound delay to less than 10 µs (Figure
4). Each invocation of this algorithm processes some number
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Algorithm 2: Trumpet main loop

1 Function mainLoop(timeBudget)
2 if time to sweep then
3 startSweep()
4 if last sweep is not finished then
5 sweep(timeBudget)
6 while Packets in NIC queue do
7 processPackets(batches of 16 packets)

of triggers from the trigger repository (lines 4-5 in Algorithm
3). This processing essentially gathers all the statistics from
the flow entries (recall that each trigger entry has a list of
matched flow entries).

Algorithm 3: Periodic triggers sweeping

1 Function sweep(timeBudget)
2 b = timeBudget / 10
3 foreach t = nextTrigger() do
4 foreach t.FlowList do
5 flowNum = processFlowList(t)
6 t.flowNum += flowNum
7 b = b - (t.avgUpdateTime × flowNum)
8 if b≤0 then
9 if passedTime ≥ timeBudget then

10 saveSweepState()
11 updateAvgUpdateTime(passedTime)
12 return
13 b = timeBudget / 10
14 if epoch - t.lastUpdate ≥ t.timeInterval then
15 if t.condition(t) then
16 report(t)
17 reset(t)
18 t.lastUpdate = epoch
19 updateAvgUpdateTimes(passedTime)

Once all the flows for a trigger have been processed, the
algorithm tests the predicate and reports to the TEM if the
predicate evaluates to true (lines 14-18 in Algorithm 3). How-
ever, while processing a trigger, the processing bound may
be exceeded: in this case, we save the sweep state (line 10),
and resume the sweep at that point when the NIC queue is
next empty. For each trigger, during a sweep step, instead
of computing elapsed time after processing each flow entry,
which can be expensive (∼100 cycles), we only compute the
actual elapsed time when the estimated elapsed time exceeds
a small fraction of the budget (lines 7-13). The estimate is
based on the number of flows processed for this trigger so far.

Our approach assumes we can complete sweeping all of the
triggers within one epoch (10ms): in Section 7.2, we demon-
strate that we can achieve this for 4K triggers on one core
for a 10G NIC with small packets at full line rate even under
DoS attack, and show that removing some of our optimiza-
tions (discussed below) can result in unfinished sweeps. We
also demonstrate that, in many cases, shorter epoch durations
cannot be sustained in at least one current CPU.
Performance Optimizations. We lazily reset counters and
remove old flows. In each flow table entry, we store the epoch
number when the entry was reset. Then, when we update an
entry or read its data during trigger sweep, if the stored epoch
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Figure 4: Queue-adaptive sweep scheduling strategy is effective at
keeping queue sizes below 150 packets or 10 µs.
number does not match the current, we reset the statistics
(lines 15-16 in Algorithm 1).

Trumpet also incorporates several memory optimizations
for this phase. Trigger entries are stored contiguously in
memory to facilitate hardware cache prefetching. We store
the trigger repository in a huge page to reduce TLB misses
and store the list of flow entries that match a trigger in a
chunked linked list [43] to improve access locality. Each
chunk contains 64 flow entries, and these are allocated from
a pre-allocated huge page, again for TLB efficiency. For
triggers with many flows, chunking reduces the cost of pointer
lookups comparing to a linked list of flows at the cost of
slightly higher memory usage.

Our final optimization involves efficiently gathering statis-
tics at the required flow granularity. For example, to support
a trigger that reports if the volume of traffic to a host (A) from
any source IP (at flow-granularity of source IP) is larger than
a threshold, we must track the volume per source IP across
flows. We can track this with a hash table per trigger, but this
adds memory and lookup overhead. Instead, we dynamically
instantiate a new instance of the trigger: when a packet from
source IP X matches the trigger with a filter dstIP=A, we
create a new trigger with filter srcIP=X and dstIP=A.

5.6 Degrading Gracefully Under DoS At-
tacks

It is important for Trumpet to be robust to DoS attacks that
aim at exhausting resources in the monitoring system and
either cause packet loss, or prevent trigger sweep completion
(which would prevent accurate detection of events). The
expensive steps in Trumpet are matching new flows against
triggers in the match-and-scatter phase and updating a trigger
based on its flow list in the gather-test-and-report phase.

We assume the attacker knows the design of the system. To
attack the system by triggering the largest possible number
of expensive match operations, the attacker should send one
minimal-sized packet per flow. With this, sweeps might not
complete, so trigger reports might not be correctly reported.
To mitigate this, when we detect unfinished sweeps, we im-
pose a DoS threshold: matching is invoked only on flows
whose size in bytes exceeds this threshold in the filter table,
and flows will be removed from the flow table if they send
fewer bytes than the threshold as new flows collide with them
in the flow table or triggers read them at sweep. The DoS
threshold can be predicted by profiling the cost of each packet
processing operation and each matching operation (Section
6). This design comes at the cost of not monitoring very
small flows: we quantify this tradeoff in Section 7.
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5.7 Summary

Trumpet balances several conflicting goals: event expres-
sivity, tight processing and delay budgets, and efficient core
usage. It achieves this by carefully partitioning trigger pro-
cessing over two phases (match-and-scatter and gather-test-
and-report) to keep data access locality per packet processing,
keep per flow statistics efficiently, and access trigger infor-
mation once per epoch. To make match-and-scatter phase
efficient, Trumpet uses tuple search matching, NIC polling
(DPDK), batching packets, cache prefetching, huge pages
(fewer TLB misses) and caching last flow entry. To minimize
processing delay during gather-test-and-report, we proposed
a queue-adaptive multi-step sweep. We optimized the sweep
to finish within the query time interval using lazy reset (bring-
ing less data into cache), accessing data in a linear fashion
(leveraging cache prefetching), checking the time less often,
chunking flow entries (fewer pointer jumps) and using huge
pages (fewer TLB misses). While some of these are well-
known, others such as the adaptive sweep, our two-phase
partitioning, and our approach to DDoS resiliency are novel.
Moreover, the combination of these techniques is crucial to
achieving the conflicting goals. Finally, our experiences with
cache and TLB effects and data structure design can inform
future efforts in fast packet processing.

6. TRUMPET EVENT MANAGER
Trumpet Event Manager (TEM) translates network-wide

events to triggers at hosts, collects satisfied triggers and statis-
tics from hosts, and reports network-wide events. Figure 5
shows the detailed process using an example: Consider an
event expressed as a predicate over the total traffic volume
received by a service on two hosts where the predicate is true
if that quantity exceeds a threshold of 10Mbps. In step 1,
TEM statically analyzes the event description to determine
the trigger predicate, finds the hosts to install the triggers on
based on the event filter defined by the service IP addresses
and the mapping of IP addresses to hosts. Then, it divides
the threshold among the triggers and installs them in step 2.
For the example, we set the threshold for each host as half of
the event threshold (5Mbps). If neither of the host triggers
exceed 5Mbps, their sum cannot be larger than 10Mbps. In
step 3, TPMs at hosts measure traffic and send trigger sat-
isfaction messages to TEM specifying the event and epoch
when evaluating triggers in the gather-test-and-report phase.

In step 4, upon receiving the first satisfaction report for
the event, TEM polls the other hosts for their local value of
the quantity at that epoch. For our example, a TPM may
have sent a satisfaction with value 7Mbps, thus TEM asks
for the value at the other TPM to check if its value is above

3Mbps or not. In step 5, TPMs respond to the controller polls
after finishing phase 2 when they can steal cycles from packet
processing; TPM allows triggers to keep the history of a few
last epochs to answer polls. Finally in step 6, TEM evaluates
the event after receiving all poll responses. For this to work,
TEM relies on time synchronized measurement epochs; the
synchronization accuracy of PTP [29] should be sufficient for
TEM.
Network wide queries. The approach of dividing a network-
wide threshold for an aggregate function can accommodate
many kinds of aggregate functions. For example, it is pos-
sible to design thresholds for triggers to bound the error on
any convex function on the average of quantities distributed
among hosts [50] or their standard deviation [18]. Beyond
these, Trumpet can also support other kinds of network-wide
queries. For example: a) Gather statistics from many events:
To find if 50% of VMs (or a certain number of VMs) of a
tenant receive traffic exceeding a threshold, we add events
for each VM in Trumpet, gather their trigger satisfaction ev-
ery epoch and report if more than 50% of the related events
happened. b) Drill down based on events: TEM can install
events conditionally, for example, install a heavy hitter detec-
tion event only when another event (e.g., loss) happens. c)
Estimating network-wide statistics: We can monitor standard
deviation of traffic volume to a set of VMs with a bounded
error, ε by defining two events over the standard deviation
(std < stdold − ε and std > stdold + ε) and updating them
accordingly if one of them is satisfied. d) Relative predicates:
By feeding the estimate of average and standard deviation to
another event, we can detect outlier VMs that receive more
than k× standard deviation above the average.
40G and beyond. Although Trumpet needs only one core to
process 14.8Mpps small packets on 10G links, or full line rate
650 byte packets on 40G links, at 100G and/or with smaller
packet sizes, multiple cores might be necessary. To avoid
inter-core synchronization, TEM runs independent TPMs on
each core and treats them as independent entities. Some syn-
chronization overhead is encountered at the TEM, but that is
small as it is incurred only when one of triggers is satisfied.
Assuming all packets from a flow are usually handled by the
same core, this ensures TPMs can keep the state of a flow
correctly. Our network-wide use-case in Section 7.1 demon-
strates this capability. It is also possible to design, at each host
with multiple TPMs, a local-TEM which performs similar
aggregation at the host itself with minimal synchronization
overhead: this can reduce polling overhead and speed up
event detection at the TEM.
DoS resiliency. TEM allows operators to set a DoS thresh-
old such that flows whose size are below that threshold are
not processed. This reduces matching overhead, allowing
Trumpet to degrade gracefully under DoS attacks. TEM cal-
culates the threshold based on a model that profiles offline,
using the set of defined triggers (Eq. 1), the TPM processing
costs in the end-host system configuration. Trumpet process-
ing costs include: a) packet processing and checking the filter
table, TP b) matching, TM c) updating the flow table, TU and
d) sweeping, TS. The goal is to find the maximum threshold

137



value that keeps total Trumpet processing time, T , below 1s in
each second. We can find T −TP by profiling the free time of
the CPU in an experiment that only forwards the traffic with
smallest packets that do not pass DoS threshold. Matching
overhead per flow (Match(#patterns)) is a linear function of #
filter patterns with coefficients that can be calculated offline.
Similarly, we compute maximum time to update per flow
statistics (Update) and the time to update a trigger based on a
flow (Sweep) offline.6 The factor 1.5 in Eq. 4 is because the
sweep can run in multiple steps while new flows may arrive.
As a result, triggers may keep flow entries for both flows that
came last epoch and current epoch. Thus, the sweep process
may process 50% more entries per trigger on average. We
evaluate the accuracy of our model in Section 7.2.

T = TP +TM +TU +TS (1)

TM = Match(#patterns)× (
ratedos

threshold
+

rategood

avg pkt per flow
) (2)

TU =U pdate× rategood (3)

TS = 1.5×Sweep×max trigger per flow×
rategood

avg pkt per flow
(4)

TEM Scalability and TPM performance. As we show in
Section 7, TEM can process nearly 16M trigger satisfaction
reports per second per core. If necessary, we can scale TEM
even more by sharding events on different servers or by re-
ducing the frequency of polling if TEM divides the threshold
unequally based on the history of trigger satisfaction at each
host [10]. To avoid delaying packets at end-hosts, TPM uses
non-blocking sockets. To reduce poll response latency, TPM
batches socket reads and writes and poll processing. TEM
can, if necessary (left to future work), reduce TPM overhead
by slicing event filters to minimize the number of trigger
patterns for matching, and by time multiplexing triggers on
hosts by (un)installing them over time.

7. EVALUATION
In this section, we evaluate Trumpet’s expressivity and

performance using an implementation of Trumpet’s TPM and
TEM (10,000 lines of C code).7 Our implementation uses
DPDK 2.2 [15] to bypass the network stack. Our experiments
in this section are conducted on 3 Xeon E5-2650 v3 2.30GHz
with two 10-core CPUs 25MB L3 and 256KB L2 cache. Our
machine has an Intel 82599 10G NIC.

7.1 Expressivity
Trumpet is expressive enough to track and control fine time-

scale flow dynamics, correlate or drill-down on interfering
flows, or detect service-scale anomalies. To demonstrate this,
we implemented in Trumpet the three use-cases discussed in
Section 2 whose event definition is presented in Section 3.
Identifying losses caused by traffic bursts. Trumpet can
detect losses caused by traffic bursts and, in a tight control
6The model assumes that the attacker is not aware of the installed triggers,
thus triggers only need to process “good” flows. The model can be extended
to the case where the attacker knows the installed triggers; we have left this
to future work.
7Available at https://github.com/USC-NSL/Trumpet
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Figure 7: Network-wide and congestion usecases

loop, activate pacing to smooth bursts; this can ameliorate
the overhead of pacing [1, 21]. Such an approach can be
used in data centers with bottlenecks in the wide-area: bursts
can be preferentially paced to reduce loss. As an aside, VM
stacks, which may often run different transport protocols,
can use Trumpet instead of implementing burst (and other
kinds of event) detection within their protocol stacks. In our
experiment, a user connects to a server in the cloud through
an edge router with shallow queues. The connection between
the Internet user and the edge router is 10Mbps and incurs
100ms delay. The link from the server to the edge router is
1 Gbps. Figure 6a shows that there are packet losses every
time there is a traffic burst. Trumpet quickly detects the burst
and installs a trigger that informs the controller whenever
there are more than 8 lost packets within a burst. Figure 6b
shows that the trigger is matched after 3 seconds from the
starting point of the experiment when the bursts become large
enough. Based on the triggers, the controller quickly enables
TCP pacing to eliminate the losses and achieves much higher
throughput (from 1.94Mbps to 5.3Mbps).
Identifying the root cause of congestion. Despite advances
in transport protocols, transient packet losses can be triggered
during sudden onset of flows. In data centers, these losses
can slow distributed computations and affect job completion
times. To diagnose this transient congestion, it is necessary
to identify competing flows that might be root causes for the
congestion. Trumpet can be used for this task in two ways. In
the reactive drill-down approach, the operator defines a TCP
congestion detection event and, when it is triggered for many
flows, programmatically installs another event to find heavy
hitters at the common bottleneck of those flows. This may
miss short flows because of the delay in detecting congestion.
In the proactive approach, the operator installs both events
on all servers in advance and correlates their occurrence.

To demonstrate both approaches, we use three senders and
one receiver with a bottleneck bandwidth of 100Mbps. Using
iperf, two senders send TCP traffic for 20s, and after 15s, the
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third sender sends a short UDP flow (512KB in 40ms) and
creates congestion. We define a congestion detection event
to report if, at the end of an epoch, any 5-tuple flow cannot
receive acks for more than 50% of outstanding data at the
beginning of the epoch (Table 2). We define the heavy hitter
detection event to report if the volume of any 5-tuple flow is
larger than 12KB in every 10ms (10% of link bandwidth).

Figure 7a shows the normalized throughput of the three
connections measured at the receiver as lines and the detected
events at the controller as dots. The congestion event could
correctly detect throughput loss in TCP connections three
epochs after the start of the UDP traffic. The delay is partly
because it takes time for the UDP traffic to affect TCP connec-
tion throughput. After detecting congestion, TEM installs the
HH_Reactive event to detect heavy hitters with 200µs delay
(order of ping delay). HH_Reactive can correctly detect the
UDP connection in the fourth epoch after its initiation. Figure
7a shows that the proactive approach (HH_proactive) could
also correctly detect the UDP flow over its lifetime.
Network-wide event to detect transient service-scale
anomaly. This use-case shows how Trumpet can detect
if the total volume of traffic of a service exceeds a given
threshold within a 10ms window. In our experiment, two
end-hosts each monitor two 10G ports on two cores. The
controller treats each core as a separate end-host (this
demonstrates how Trumpet can handle higher NIC speeds).
The RTT between the controller and end-hosts is 170 µs.
We generate different number of triggers that are satisfied
every measurement epoch. When the predicate of a trigger
is satisfied at an end-host, the end-host sends a satisfaction
message to the controller and the controller polls other
servers and collects replies from them.

Figure 7b shows the delay between receiving the first satis-
faction and the last poll reply at the controller for different
numbers of events. Even with 256 satisfied events, the av-
erage delay is only about 0.75ms. The average delay for
processing satisfactions and generating polls at the controller
is 60ns, showing that Trumpet controller can potentially scale
to more than 16M messages from TPMs per second per core.

7.2 Performance
Methodology. In our experiments, our test machine receives
traffic from a sender. The traffic generation pattern we test
mirrors published flow arrival statistics for data centers [49]:
exponential flow inter-arrival time at each host with 1ms av-
erage with 300 active flows. The TPM monitors packets and
forwards them based on their destination IP. It has 4k triggers
and each packet matches 8 triggers. Packets may match mul-
tiple triggers when a flow is monitored using multiple queries
with different predicates (variable, aggregate function, thresh-
old), time intervals or flow granularities. Triggers track one
of 3 statistics: packet count, traffic volume or the number
of lost packets. In particular, tracking packet losses requires
tracking retransmissions across multiple epochs, which can
consume memory and additional CPU cycles. However, the
triggers are designed such that the 8 triggers matched by each
packet cover the 3 types of statistics. Also, every trigger is

evaluated at the granularity of 10ms. Unless otherwise speci-
fied, the default burst size is 1 packet (i.e., every subsequent
packet changes its flow tuples), which foils lookup caching.
These settings were chosen to saturate the packet process-
ing core on our server. We also explore the parameter space
(number of triggers, flow arrival rates, time interval, etc.) to
characterize the feasibility region — the set of parameters for
which Trumpet can monitor events without losing a packet or
missing a sweep.

We use several metrics to evaluate our schemes, including
the fraction of time the CPU was quiescent (i.e., not in either
of the two phases; this quantity is obtained by aggregating
the time between two queue polls that returned no traffic),
the time for the sweep phase, and whether a particular design
point incurred loss or not. We ran each experiment for 5
times with different flow arrival patterns for 50 seconds. The
variance across runs is very small, and we present the average.
Baseline experiment. We ran our synthetic traffic at the
maximum packet rate of 14.8Mpps (64B per packet) on a
10G link for the trigger configuration discussed above and
found that (no associated figure) TPM (a) never loses a packet,
(b) is able to correctly compute every statistic, and (c) is able
to complete sweeps within an epoch so triggers are correctly
evaluated. We also got the same results on a 40G (4x10G)
NIC with 650 byte packets at full line rate. For a 40G NIC,
we expected to be able to support 256 byte packets (since
for a 10G NIC we can support 64 byte packets at line rate).
However, in our evaluation setting, TPM has to poll four
ports, and this polling introduces overhead, requiring a larger
packet size for Trumpet to be feasible at 40G.

The time granularity in this experiment is 10ms, and we
earlier showed that other simpler strategies (Section 5.1) in-
cur 10-20% packet loss in this regime. This experiment
validates our design and suggests that it may be possible to
monitor a variety of events precisely and at fine-timescales
by leveraging the computing capabilities of end-hosts in data
centers. More important, in this baseline experiment, the
CPU is never quiescent. Finally, we have designed TPM for
the worst-case: servers in data centers are unlikely to see sus-
tained 14.88Mpps rate (we quantify below how our system
performs at lower rates).
Match-and-scatter optimizations. We described several
optimizations for the match-and-scatter phase in Section 5.4.
Here we quantify the benefits of each optimization (Figure
9). Packet prefetching saves about 2% of CPU time over
different packet rates, a significant improvement because
we save about 200µs in a 10ms interval. This is more than
enough for two sweeps (each sweep takes < 100µs). More
important, recall that at full packet rate, the CPU is never
quiescent. Thus, any small increase in CPU time will cause
the monitoring system to lose packets, which is completely
unacceptable. Indeed, when we turn off packet prefetching,
at 14.88Mpps, we experience 4.5% packet loss, and TPM
cannot finish the sweep of all the triggers.

Similarly, although other optimizations contribute small
benefits, each of these benefits is critical: without these, TPM
would either lose packets or not be able to finish sweeps in
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Figure 9: Optimizations saving of flow tables and trigger tables

time (which can lead to missed events). Using huge pages
for storing the flow table and triggers saved 6µs of sweep
time. Moreover, huge pages and prefetching flow table entries
saves 0.2% of CPU time. To understand the effectiveness of
caching the result of the last flow table lookup for a burst of
packets, Figure 8b shows the impact on quiescent time with
different burst sizes for 12Mpps: with the growth of the burst
size from 1 to 8, the CPU quiescent time increases from 10%
to 13%.
Gather-test-and-report phase optimizations. For a simi-
lar reason, even small benefits in this phase can be critical to
the viability of TPM. Storing trigger entries contiguously in
the trigger repository reduces the sweep time by 2.5µs (Fig-
ure 9) because it enables hardware prefetching. To evaluate
the benefit of using chunked lists, we keep the same total
number of active flows as 300, but change the number of
flows per trigger from 200 to 45k (recall that, in our traffic,
1000 flows arrive at each host every second). Figure 8a shows
that this can save up to 27µs (80%) in sweep time when there
are many flows per trigger, and its overhead is small when
there are few flows per trigger.
Resource-proportional design. Trumpet’s careful partition-
ing of functionality results in resource-usage that scales well
both with traffic rate, and with the level of monitored traf-
fic. This efficient design is the key reason we are able to
increase the expressivity of Trumpet’s language, and track
fairly complex per-packet properties like loss rates and RTTs.

Figure 10b shows that CPU quiescent time decreases
steadily as a function of the packet rate: at 8Mpps, the
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Figure 10: Proportional resource usage on % flows matched (legend
shows rate in Mpps)
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Figure 11: DoS resiliency

system is quiescent 40% of the time, while at 14Mpps it is
always fully utilized. In this experiment, the quiescent time
is independent of the fraction of matching traffic because
the dominant matching cost is incurred for every new flow,
regardless of whether the flow matches triggers filters or
not. However, the gather phase scales well with the level of
monitored traffic: as Figure 10a shows, the sweep time is
proportional only to the number of flows that match a trigger.
Thus if trigger filters match fewer flows, the sweep will take
shorter, and the TPM can support smaller time intervals.
DoS-resilience. We perform an experiment in which the
TPM is subjected to the full line rate. Legitimate flows send
10 packets of maximum size (1.5KB). We consider two at-
tack models: a) Syn attack where the attacker sends only
one packet per flow to maximize packet processing overhead
b) Threshold attack where the attacker knows the threshold
and sends flows with size equal to the threshold to maximize
matching overhead. Also all flows come in a burst of one (no
subsequent packets are from the same flow). Our experiment
quantifies the percentage of DoS traffic that can be tolerated
at each DoS threshold. Thus, it uses two independent knobs:
the fraction of DoS traffic in the full packet rate, and the DoS
threshold. Each point in Figure 11a plots the DoS fraction
and the threshold at which the system is functional: even a
small increase in one of these can cause the system to fail
(either lose packets or not finish sweeps).

As Figure 11a shows, for any threshold more than 440B (on
the right of the one packet line), the TPM can sustain a SYN
attack. This form of attack is easy for the TPM to handle,
since if the traffic is below the threshold, then matching is not
incurred. The threshold is higher than 1 packet because there
are false positives in the fast counter array implementation
of the filter table [2]. At lower thresholds, smaller fractions
of attack traffic can be sustained. For the threshold attack,
a threshold of 384B (832B) ensures immunity to more than
30% (50%) DoS traffic; this level of bandwidth usage by DoS
traffic means that 90% (96%) of packets are from the attacker.
The DoS threshold can be decreased even further, to 128
bytes, by checking against a few filters just before matching
triggers, to see if a flow would likely match any trigger (this
is cheaper than checking which trigger a flow matches). At
this threshold, a very small fraction of Web server flows in a
large content provider would go unmonitored [49].

As discussed in Section 6, the DoS threshold can be cal-
culated by a profiling-based model. Figure 11b shows that
the predicted threshold is close to the experimental threshold
over different number of trigger patterns (series show DoS
traffic % and suffix “p” means prediction).
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Figure 12: Performance of trigger matching
Performance of matching triggers. A key bottleneck in
Trumpet is the cost of matching a packet to a trigger filter.
Even with aggressive caching of lookups, because our event
descriptions involve a multi-dimensional filter, this cost can
be prohibitive. Figure 12a depicts the impact of matching
complexity on Trumpet. Recall that we use the tuple search
algorithm to match across multiple dimensions.

The first important result is that this cost is independent
of the number of triggers. This is key to our scaling perfor-
mance: we are able to support nearly 4K concurrent triggers
precisely because the tuple search algorithm has this nice
scaling property. Where this algorithm scales less well is in
the direction of the number of “patterns”. Recall that a pat-
tern is a type of filter specification: a filter expressed on only
srcIP or dstIP is a different pattern than one expressed
on the conjunction of those two fields. Our matching cost
increases with the number of patterns. It may be possible for
the TEM to analyze trigger descriptions and avoid installing
triggers with too many patterns at a TPM, a form of admission
control8. To further reduce the impact of the total number of
patterns, we can adopt trie indexes [52] to reduce the number
of hash table lookups. We have left this to future work.

Finally, in Figure 12b we test how matching cost depends
on increasingly complex matching scenarios. We consider
four such scenarios: no matching (no flows match any trig-
gers), same 8 triggers (all the flows match the same 8 triggers,
the other triggers are not matched), diff 8 triggers (each flow
matches 8 different triggers, but these triggers have the same
filter), and 8 trigger patterns (each flow matches 8 different
trigger patterns). We observe that the per packet processing
time increases from no matching to same 8 triggers and to
diff 8 triggers. However, the processing time does not fur-
ther grow with 8 trigger patterns because our performance
does not depend on whether a flow matches different trigger
pattern or not, but only depends on the number of patterns.
TPM’s feasibility region. We ran experiments with differ-
ent traffic properties (packet rate, number of active flows,
flow arrival rate) and TPM parameters (number of triggers,
number of triggers per flow, time interval) to explore the
feasibility region for the TPM on our server. We call a set
of parameters feasible if, for those parameters, TPM does
not drop packets and completes all sweeps. The feasibility
region is the maximal boundary of feasible parameter sets.
We run each parameter set 5 times and show the feasibility
region in Figure 13 for 300 and 600 active flows per time

8More generally, TEM might perform other forms of admission control,
such as rejecting events whose filters span a large part of the address space.
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Figure 13: Feasibility region over the TPM parameters

interval (e.g., 10ms). The settings have different number of
triggers per flow (x axis) and different time intervals (series).
As the number of triggers per flow increases, the number of
triggers also increases accordingly. For example, the setting
with 8 triggers per flow has 4k triggers, and the setting with
16 triggers per flow has 8k triggers.

As we decrease the time interval, there will be fewer cycles
in an epoch to use for sweeps, and there is a higher chance that
the TPM cannot finish the sweep. For example in Figure 13a,
if the time interval is 5 ms and there are 8 triggers per flow,
the TPM cannot finish all sweeps for 14.88Mpps. However,
reducing the rate to 13.5Mpps (73B packets in 10G), gives
more free cycles between packets for sweeping, which makes
the setting feasible. Moreover, as we increase the triggers per
flow, the gather phase must process more flow entries, thus
can handle lower rates. For example, if the time interval is
10 ms and there are 16 triggers per flow, the packet rate must
be below 14.1Mpps. Increasing the number of active flows to
600 in Figure 13b also increases the number of flow entries
to be processed in the gather phase and reduces the feasible
packet rate. We have also tried with different flow arrival
rates and noticed that the rate does not affect the feasible
boundary until it changes the number of active flows in an
interval significantly. Cloud operators can characterize the
feasibility region for their servers, and then parameterize
TPM based on their workload.
TPM and packet mirroring. We have verified the mirror-
ing capability by configuring the NIC to mirror every packet
to a reserved queue for TPM while other cores read from the
other queues. The TPM could handle 7.25Mpps without any
packet loss or unfinished sweeps. This rate is almost half of
the 10G maximum line rate as each packet is fetched twice
from the NIC.

8. RELATED WORK
In Section 2, we described why commercial packet mon-

itoring solutions are insufficient for our purposes. Recent
research has proposed a variety of solutions towards more
active forms of monitoring, mostly by leveraging switch func-
tionality. Planck [48] mirrors sampled packets at switches.
NetSight [25] and EverFlow [58] use switches inside the
network to send packet headers to a controller. NetSight
incurs bandwidth overhead and CPU overhead by process-
ing packet postcards twice (at hosts/switches and controller).
EverFlow [58] tries to address the bandwidth overhead by
letting the operator select packets for mirroring. OpenSketch
[56], FlowRadar [35] and UnivMon [37] use sketches inside
switches to support many per-flow queries with low band-
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width overhead, but require changes in switches. Relative
to these systems, Trumpet sits at a different point in the de-
sign space: it can monitor every packet by using compute
resources in servers, and incurs less bandwidth overhead by
sending trigger satisfaction reports. Ultimately, we see these
classes of solutions co-existing in a data center: Trumpet can
give quick and early warning of impending problems and
has more visibility into host-level artifacts (e.g., NIC drops),
and other switch-based monitoring systems can be used for
deep drill-down when packet or header inspection inside the
network is required.

At end-hosts, existing monitoring tools often focus on a
specific type of information, require access to VMs or use too
much of a resource. For example, SNAP [57] and HONE [53]
monitor TCP-level statistics for performance diagnosis. Perf-
Sight [55] instruments hypervisor and VM middleboxes to
diagnose packet losses and resource contention among VMs
in 100ms timescale. RINC [20] infers internal TCP state of
VMs from packets. Pingmesh [23] leverages active probes to
diagnose connectivity problems. In contrast, Trumpet shows
it is possible to inspect every packet at end-hosts at line speed
for a wide set of use-cases. Trumpet runs in the hypervi-
sor and assumes no access to the VM’s networking stack.
Trumpet can possibly be extended to non-virtualized systems
(e.g., containers, by interposing on the network stack), but we
have left this to future work. n2disk [42] allows capturing all
packets to disk in 10G links using multiple cores. Trumpet
aggregates packet-level information on the fly and requires no
storage. Packet monitoring functions can be offloaded to pro-
grammable NICs [24, 6]. However, these devices currently
have limited resources, are hard to program [34], and have
limited programmability compared to CPUs. Trumpet can
leverage NIC offloading if the hypervisor cannot see pack-
ets (e.g., SR-IOV and RDMA). As NICs evolve, it may be
possible to save CPU by offloading some parts of Trumpet
processing, such as matching, to NICs.

At the controller, there are many systems that can poten-
tially integrate with Trumpet. Kinetic [32] allows controlling
networks based on events that can be generated using Trum-
pet. Felix [7] generates matching filters for end-host measure-
ment from high-level user queries and routing configuration.

Gigascope [12] introduces a stream database of traffic mir-
rored from the network, and supports a variety of traffic
queries on the database. It also introduces a two stage ap-
proach of low-level queries and high-level queries to improve
streaming efficiency [11]. Instead of collecting traffic into
a central database, Trumpet distributes the monitoring and
stream processing at all the end-hosts and aggregates the trig-
ger information to capture network-wide events. Trumpet
also introduces a new trigger repository that captures events
in 10 ms intervals at line speed.

9. CONCLUSIONS
In this paper, we discuss the design of a new capability in

data-center network: active fine-timescale and precise event
monitoring. Our event description language is expressive
enough to permit novel events that are particularly relevant
in data centers. Our algorithms and systems optimizations

ensure a design that can process every packet at line-rate,
is DoS-resilient, scales to future network technologies, and
permits programmed tight-loop control and drill-down.

In future work, Trumpet can benefit from NIC capabil-
ities such as rule matching to detect events in links with
higher packet rates with less CPU overhead. Moreover, in
collaboration with monitoring at other vantage points (e.g.,
switches), Trumpet may achieve the most cost-effective and
comprehensive solution for network telemetry and root cause
analysis.
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