
Resources:	Understanding	the	output	of	Unit	Tests
I	often	have	questions	regarding	interpretation	of	unit	test	output.

Here	is	the	complete	output	from	a	run:

$	make	test
./unittest.out
Running	main()	from	src/gtest_main.cc
[==========]	Running	22	tests	from	4	test	suites.
[----------]	Global	test	environment	set-up.
[----------]	5	tests	from	getStringTest
[RUN]	getStringTest.displaysPrompt
[OK]	getStringTest.displaysPrompt	(0	ms)
[RUN]	getStringTest.displaysDifferentPrompt
[OK]	getStringTest.displaysDifferentPrompt	(0	ms)
[RUN]	getStringTest.readsWord
[OK]	getStringTest.readsWord	(0	ms)
[RUN]	getStringTest.readsOneWord
[OK]	getStringTest.readsOneWord	(0	ms)
[RUN]	getStringTest.readsAnotherSingleWord
[OK]	getStringTest.readsAnotherSingleWord	(0	ms)
[----------]	5	tests	from	getStringTest	(0	ms	total)

[----------]	5	tests	from	getIntegerTest
[RUN]	getIntegerTest.displaysPrompt
[OK]	getIntegerTest.displaysPrompt	(0	ms)
[RUN]	getIntegerTest.displaysDifferentPrompt
[OK]	getIntegerTest.displaysDifferentPrompt	(1	ms)
[RUN]	getIntegerTest.readsInteger
[OK]	getIntegerTest.readsInteger	(0	ms)
[RUN]	getIntegerTest.readsOneInteger
[OK]	getIntegerTest.readsOneInteger	(0	ms)
[RUN]	getIntegerTest.readsAnotherSingleInteger
[OK]	getIntegerTest.readsAnotherSingleInteger	(0	ms)
[----------]	5	tests	from	getIntegerTest	(1	ms	total)

[----------]	5	tests	from	getDoubleTest
[RUN]	getDoubleTest.displaysPrompt
[OK]	getDoubleTest.displaysPrompt	(0	ms)
[RUN]	getDoubleTest.displaysDifferentPrompt
[OK]	getDoubleTest.displaysDifferentPrompt	(0	ms)
[RUN]	getDoubleTest.readsDouble
[OK]	getDoubleTest.readsDouble	(0	ms)
[RUN]	getDoubleTest.readsOneDouble
[OK]	getDoubleTest.readsOneDouble	(0	ms)
[RUN]	getDoubleTest.readsAnotherSingleDouble
[OK]	getDoubleTest.readsAnotherSingleDouble	(0	ms)
[----------]	5	tests	from	getDoubleTest	(0	ms	total)

[----------]	7	tests	from	assignment1Test
[RUN]	assignment1Test.displaysPrompts
[OK]	assignment1Test.displaysPrompts	(0	ms)
[RUN]	assignment1Test.givesReturnValue
[OK]	assignment1Test.givesReturnValue	(0	ms)
[RUN]	assignment1Test.displaysOneLoop
tests/test_01_04_assignment1.cpp:73:	Failure
Expected	equality	of	these	values:
1
mResponse
Which	is:	3
[FAILED]	assignment1Test.displaysOneLoop	(0	ms)
[RUN]	assignment1Test.displaysTwoLoops
[OK]	assignment1Test.displaysTwoLoops	(0	ms)
[RUN]	assignment1Test.displaysManyLoops
tests/test_01_04_assignment1.cpp:113:	Failure
Expected	equality	of	these	values:
100
mResponse
Which	is:	-3
[FAILED]	assignment1Test.displaysManyLoops	(0	ms)
[RUN]	assignment1Test.displaysZeroLoops

tests/test_01_04_assignment1.cpp:130:	Failure
Expected	equality	of	these	values:
0
mResponse
Which	is:	3
[FAILED]	assignment1Test.displaysZeroLoops	(0	ms)
[RUN]	assignment1Test.displaysNoNegativeLoops
tests/test_01_04_assignment1.cpp:147:	Failure
Expected	equality	of	these	values:
-1
mResponse
Which	is:	-7
[FAILED]	assignment1Test.displaysNoNegativeLoops	(0	ms)
[----------]	7	tests	from	assignment1Test	(0	ms	total)

[----------]	Global	test	environment	tear-down
[==========]	22	tests	from	4	test	suites	ran.	(1	ms	total)
[PASSED]	18	tests.
[FAILED]	4	tests,	listed	below:
[FAILED]	assignment1Test.displaysOneLoop
[FAILED]	assignment1Test.displaysManyLoops
[FAILED]	assignment1Test.displaysZeroLoops
[FAILED]	assignment1Test.displaysNoNegativeLoops

4	FAILED	TESTS
Makefile:18:	recipe	for	target	'test'	failed
make:	***	[test]	Error	1

Now,	let’s	talk	about	how	to	digest	it.	First,	the	end	of	the	report	is	a	summary:

[==========]	22	tests	from	4	test	suites	ran.	(1	ms	total)
[PASSED]	18	tests.
[FAILED]	4	tests,	listed	below:
[FAILED]	assignment1Test.displaysOneLoop
[FAILED]	assignment1Test.displaysManyLoops
[FAILED]	assignment1Test.displaysZeroLoops
[FAILED]	assignment1Test.displaysNoNegativeLoops

4	FAILED	TESTS

So,	there	were	4	kinds	of	tests	that	failed:	displaysOneLoop,	displaysManyLoops,	etc.	When	the	summary	is
listed,	you	should	note	the	first	failed	test	and	find	details	about	that	test.

In	this	case	displaysOneLoop	was	the	first	to	fail.	To	get	details,	scroll	back	up	to	find	the	details	on	this
test.	Here’s	the	detailed	information	for	this	test:

[RUN]	assignment1Test.displaysOneLoop
tests/test_01_04_assignment1.cpp:73:	Failure
Expected	equality	of	these	values:
1
mResponse
Which	is:	3
[FAILED]	assignment1Test.displaysOneLoop	(0	ms)

Note	that	you	can	look	at	the	actual	unit	test	code.
It’s	located	in	tests/test_01_04_assignment1.cpp,	on	line	73.	Here’s	the	code	for	that	test:

62	TEST_F(assignment1Test,	displaysOneLoop)	{
63	
64	/*	Setup	*/
65	mInputStream.str("Blue	1	3.14");
66	mOutput	=	"1	Blue	3.14\n";
67	
68	/*	Stimulus	*/
69	mResponse	=	assignment1(mInputStream,	mOutputStream);
70	
71	/*	Comparison	*/
72	EXPECT_EQ(mPrompts	+	mOutput,	mOutputStream.str());
73	EXPECT_EQ(1,	mResponse);
74	
75	/*	Tear-down	*/
76	//	Done	automatically

77	}

Also	note	that	the	failed	test	message	tells	us	the	test	expected	a	1,	but	it	saw	a	3.	If	you	look	at	line	73	of
the	code,	you	can	see	the	1	was	hard	coded	into	the	test,	and	the	variable	mResponse	is	set	to	the	return
value	of	assignment1()	(on	line	69).

I	think	we	can	read	from	this	that	assignment1()	isn’t	returning	the	expected	value.

That’s	how	I	would	interpret	the	failed	test.

From	here,	it	remains	to	figure	out	why	assignment1()	should	be	returning	a	1	in	this	case,	especially	since
there	was	an	earlier	test	that	wanted	it	to	return	3.	I	suggest	re-reading	the	assignment	description	for	the
assignment1()	function.

