
The	Linux	Boot	Sequence

How	does	your	kernel	get	loaded,	what	is	the	series	of	steps	that	occurs	in	order	to	make	this	happen,	what
partition	to	choose?	These	will	be	discussed	in	these	slides.

The	BIOS

BIOS	stands	for	Basic	Input	Output	System.	This	is	the	first	system	involved	in	the	boot	process.	BIOS	is
stored	in	read-only	memory	(on	a	chip)(PROM)

The	bios:

detects	hardware.
Loads	contents	of	NVRAM	(CMOS)	wherein	it	can	figure	out	where	to	look	for	MBR.
Finds	the	boot	loader	program	(MBR)	(will	search	in	different	devices	i.e.	floppy,	disk,	usb,	network).
Video

Master	Boot	Record

This	is	step	2	of	the	load	sequence.	The	MBR	is	located	on	the	first	sector	of	the	boot	device.

On	most	linux	devices	the	MBR	would	contain	(or	contain	a	reference	to)	the	GRUB	boot	loader.	If	booting
from	something	other	than	a	hard	disk,	you	might	use	a	different	bootloader,	but	they	essentially	all	do	the
same	thing.

We	know	that	MBR	also	has	partition	table	information.

The	bootloader	(GRUB)

Grand	Unified	Bootloader
Allows	you	to	choose	what	kernel	you	would	like	to	load.
Usually	has	nice	GUI	with	configurable	menu	and	timeouts	that	you	can	perform	kernel	or	OS	selection.
Once	selected,	GRUB	loads	kernel	into	RAM
Also	loads	the	initrd	image.
GRUB	video

The	kernel

[The	kernel]	initializes	the	devices	(via	their	drivers),	starts	the	swapper	(it	is	a	“kernel	process”,	called
kswapd	in	modern	Linux	kernels),	and	mounts	the	root	filesystem	(/).(from	man	page)

Kernel	then	executes	the	/sbin/init	program.	(PID	1)

initrd	(initial	ram	disk)	is	a	temporary	root	fs	used	by	kernel,	until	the	real	fs	is	mounted.	Also	has	drivers	in
it.

Init

This	program	first	looks	at	 /etc/inittab 	file	to	decide	linux	run	level.	Sometimes	it	is	also	referred	to	as
sysvinit.	(System	5	Init)

Following	are	the	available	run	levels

0	–	halt
1	–	Single	user	mode
2	–	Multiuser,	without	NFS
3	–	Full	multiuser	mode

https://www.youtube.com/watch?v=cRpLXvlggtA
http://youtu.be/HcQhTer9INM


4	–	unused
5	–	X11
6	–	reboot

taken	from	here

More	about	Init

/etc/init.d 	contains	all	the	start-up	scripts	for	every	service	at	every	run	level.
Init	has	worked	well	for	years…	but	Ubuntu	has	moved	away	from	it	to	 Upstart .	Ubuntu	still	retains
many	of	the	structure	of	the	 Init 	just	described.
One	of	the	reasons:	init	scripts	don’t	automatically	have	a	mechanism	to	respawn	if	the	service	dies.	So,
for	instance,	if	the	cron	daemon	crashes	for	some	reason,	you	would	have	to	create	some	other	tool	to
monitor	and	restart	that	process.
i.e.	You	can	still	restart	a	service	by	doing	 /etc/init.d/apache2	restart

Upstart

To	see	how	an	event-driven	system	can	improve	on	traditional	init	scripts,	let’s	take	the	previous	example	of
a	system	booted	with	an	unplugged	network	cable.	You	could	create	an	Upstart	script	that	is	triggered	when
a	network	cable	is	plugged	in.	That	script	could	then	restart	the	networking	service	for	you.	You	could	then
configure	any	services	that	require	a	network	connection	to	be	triggered	whenever	the	networking	service
starts	successfully.	Now	when	the	system	boots,	you	could	just	plug	in	the	network	cable	and	Upstart	scripts
would	take	care	of	the	rest.	[From	DevOps	Troubleshooting]

More	Upstart

See	all	upstart	jobs	 sudo	initctl	list
Start	an	upstart	service	 sudo	service	servicename	start

i.e.	 sudo	service	mysql	start
Can	also	stop,	restart	or	get	status	of	service.

http://www.thegeekstuff.com/2011/02/linux-boot-process/

