
IT	1100	:	Introduction	to	Operating	Systems
Cron	Jobs

Cron	Jobs

The	examples	on	this	page	have	been	taken	from	the	following	website:

https://help.ubuntu.com/community/CronHowto”

What	is	Cron?

Cron	is	the	name	of	program	that	enables	unix	users	to	execute	commands	or	scripts	(groups	of	commands)
automatically	at	a	specified	time/date.

Why	use	Cron?

Any	task	that	you	need	to	be	automated.
Any	task	that	you	need	to	be	run	at	certain	times	every	day,	week,	month,	or	year.

i.e.	Backups,	log	file	rotation,	clean	things	up,	email	newsletters

Special	cron	directories

Look	at	the	following:

/etc/cron.hourly
/etc/cron.daily 	(we	might	have	some	entries	in	here)
/etc/cron.monthly
/etc/cron.weekly

View	the	 /etc/crontab 	file	to	see	when	the	above	programs	are	run.

Type	 sudo	crontab	-l 	to	view	the	sudo	cron	jobs.	Yes	it	is	an	“el”	for	list.

Type	 crontab	-l 	to	view	your	personal	cron	jobs

Editing	Your	Cron	Jobs

To	edit	your	local	cron	jobs	and	add	entries	to	your	personal	crontab	file:

crontab	-e

To	edit	the	system	cron	jobs	(ones	that	require	sudo	permissions	or	are	run	for	all	users)	and	add	entries	to
the	system	crontab	file:

sudo	crontab	-e

There	will	be	a	bunch	of	explanation	text	at	the	top	of	the	file-	You	can	remove	it	or	leave	it,	but	it	is
recommended	that	you	leave	at	least	the	last	line	 m	h	dom	mon	dow	command 	to	help	you	remember	the	format
for	your	cron	jobs.

When	you	save	and	close	the	crontab	file	it	will	let	you	know	if	you	made	any	mistakes.	The	crontab	will	be
installed	and	begin	running	if	there	are	no	errors.

Writing	a	Cron	Job	in	the	Crontab	file

Cron	jobs	in	the	crontab	file	are	written	in	the	following	format:

https://help.ubuntu.com/community/CronHowto


m	h	dom	mon	dow	command

minute	(0-59),	hour	(0-23,	0	=	midnight),	day	(1-31),	month	(1-12),	weekday	(0-6,	0	=	Sunday),	command

An	asterisk	(*)	can	be	used	to	represent	every	instance	or	basically	saying	-	we	don’t	care	what	the	value	is.

Comma-seperated	(,)	values	and	dash	(-)	ranges	can	be	used	represent	multiple	run	dates	and	times.

It	is	recommended	that	you	use	the	full	path	to	the	desired	commands	as	shown	in	the	following	examples.
This	is	a	safe-guard	to	prevent	unwanted	behavior	in	case	multiple	instances	or	aliases	of	a	command	exist
or	are	created	at	some	point.

An	*/<num>	will	allow	the	cron	job	to	run	at	regular	intervals	of	time,	such	as	every	5	minutes	or	every
other	month.	This	format	can	be	used	on	any	of	the	values:	minute,	hour,	day,	month,	and	weekday

Examples

01	04	1	1	1	/usr/bin/somedirectory/somecommand
01	04	1	1	1	/bin/echo	"Happy	January"	>>	/home/s/smorgan/jan.txt
01	04	1	1	1	echo	"Happy	January"	>>	jan.txt

The	above	example	will	run	/usr/bin/somedirectory/somecommand	at	4:01am	on	January	1st	plus	every
Monday	in	January.

01	04	*	*	*	/usr/bin/somedirectory/somecommand
01	04	*	*	*	/usr/bin/updatedb
01	04	*	*	*	updatedb

The	above	example	will	run	/usr/bin/somedirectory/somecommand	at	4:01am	on	every	day	of	every	month.

01,31	04,05	1-15	1,6	*	/usr/bin/somedirectory/somecommand
01,31	04,05	1-15	1,6	*	/bin/tar	-cf	/backups/home-backup.tar	/home
01,31	04,05	1-15	1,6	*	tar	-cf	/backups/home-backup.tar	/home

The	above	example	will	run	/usr/bin/somedirectory/somecommand	at	01	and	31	past	the	hours	of	4:00am	and
5:00am	on	the	1st	through	the	15th	of	every	January	and	June.

0,10,20,30,40,50	*	*	*	*	/usr/bin/somedirectory/somecommand
0,10,20,30,40,50	*	*	*	*	/bin/cp	/var/log/syslog	/home/s/smorgan/syslog-copy.txt
0,10,20,30,40,50	*	*	*	*	cp	/var/log/syslog	syslog-copy.txt

The	above	example	will	run	every	10	minutes.	It	is	the	same	as	the	following	command	which	runs	on
minutes	divisible	by	10:	0,	10,	20,	30,	etc.

*/10	*	*	*	*	/usr/bin/somedirectory/somecommand
*/10	*	*	*	*	/bin/cp	/var/log/syslog	/home/s/smorgan/syslog-copy.txt
*/10	*	*	*	*	cp	/var/log/syslog	syslog-copy.txt

Nested	Commands

To	run	a	command	inside	of	another	command	we	can	use	$(	).	What	this	does	is	tells	bash	to	evaluate	the
command	or	values	inside	of	the	parenthesis	before	evaluating	the	main	command.	Other	scripting
languages	such	as	php	use	this	same	format.

The	following	will	run	the	date	command	before	it	runs	the	echo	command.	Thus	displaying	the	date	inside
of	the	quote.

echo	"This	is	the	date	$(date)"

Backticks	do	the	same	thing.

echo	'This	is	the	date	`date`'

Whichever	method	you	use	to	nest	your	commands	the	output	is	the	same:	 This	is	the	date	Wed	Mar	8
15:06:49	MST	2017



If	we	want	to	we	can	even	redirect	this	echo	to	a	file.

echo	'This	is	the	date	`date`'	>>	date.txt

cat	date.txt

Now	that	we	have	a	working	command	we	just	need	to	put	it	in	a	cronjob.	When	will	the	following	cron	job
run?	What	will	it	do?

00	06	*/5	*/2	*	echo	"This	is	the	date	$(date)"	>>	date.txt

Textbook	Time

There	is	no	textbook	reading	for	this	section.


