
IT1100	:	Introduction	to	Operating	Systems

Chapter	15

What	is	a	partition?

A	partition	is	just	a	logical	division	of	your	hard	drive.	This	is	done	to	put	data	in	different	locations	for
flexibility,	scalability,	ease	of	administration,	and	a	variety	of	other	reasons.

One	reason	might	be	so	you	can	install	Linux	and	Windows	side-by-side.

What	is	a	partition?

Another	reason	is	to	encapsulate	your	data.

Keeping	your	system	files	and	user	files	separate	can	protect	one	or	the	otherfrom	malware.	Since	file
system	corruption	is	local	to	a	partition,	you	stand	to	lose	only	some	of	your	data	if	an	accident	occurs.
Upgrading	and/or	reformatting	is	easier	when	your	personal	files	are	stored	on	a	separate	partition.
Limit	data	growth.	Runaway	processes	or	maniacal	users	can	consume	so	much	disk	space	that	the
operating	system	no	longer	has	room	on	the	hard	drive	for	its	bookkeeping	operations.	This	will	lead	to
disaster.	By	segregating	space,	you	ensure	that	things	other	than	the	operating	system	die	when
allocated	disk	space	is	exhausted.

Linux	Partitions

In	Linux,	a	minimum	of	1	partition	is	required	for	the	 / .

Mounting 	is	the	action	of	connecting	a	filesystem/partition	to	a	particular	point	in	the	 / 	root	filesystem.	I.e.
When	a	usb	stick	is	inserted,	it	is	assigned	a	particular	mount	point	and	is	available	to	the	filesytem	tree.	-
In	windows	you	might	have	an	A:,	or	B:,	or	C:,	all	of	which	point	to	different	filesystems.

What	is	Swap?

If	RAM	fills	up,	by	running	too	many	processes	or	a	process	with	a	memory	leak,	new	processes	will	fail	if
your	system	doesn’t	have	a	way	to	extend	system	memory.	That’s	where	a	swap	area	comes	in.	A	swap	space
is	a	hard	disk	partition	where	your	computer	can	“swap	out”	data	from	RAM	that	isn’t	being	used	at	the
moment	and	then	“swap	in”	the	data	back	to	RAM	when	it	is	again	needed.	Although	it	is	better	to	never
exceed	your	RAM	(performance	takes	a	hit	when	you	swap),	swapping	out	is	better	than	having	processes
just	fail.

More	on	Swap

General	rule	of	thumb	is	to	have	your	swap	space	be	2x	the	size	of	your	RAM	(if	you	have	less	than	1GB	of
ram,	otherwise	the	same	size	as	RAM)

Windows	and	Mac	OS	have	their	own	form	of	swap	files.

Swap	isn’t	absolutely	critical	on	newer	Linux	distros	but	may	impact	performance	if	you	don’t	have	it.

More	on	disk	partitions

When	a	new	disk	is	inserted	(mounted),	it	will	show	up	in	the	filesystem	hierarchy	under	devices	 /dev/ .
Most	devices	including	usb	drives	and	SATA	drives	are	treated	as	a	scsi	drive	and	will	show	up	as
/dev/sda 	or	 /dev/sdb 	or	some	 /dev/sd? 	depending	on	how	many	devices	you	have	plugged	in.



More	on	disk	partitions

Device	naming	conventions
Each	physical	device	can	be	partitioned.

/dev/sda1 	#first	partition	on	first	drive	of	type	scsi
/dev/sdb7 	#seventh	partition	on	second	drive	of	type	scsi

Partitioning	outside	the	installer

Partitioning	can	be	done	during	the	install	and	after	installing	as	well.

Most	of	the	current	linux	filesystems	are	 ext4 .
Volume	labels	make	it	possible	for	partitions	to	retain	a	consistent	name	regardless	of	where	they	are
connected,	and	regardless	of	whatever	else	is	connected.	Labels	are	not	mandatory	for	a	linux	volume.
Each	can	be	a	maximum	of	16	characters	long.
Why	do	we	care?	Sometimes	if	you	remove	a	device	and	plug	it	back	in,	it	could	be	re-assigned	(i.e.	the
first	partition	of	the	second	lowest	numbered	SCSI	drive	is	/dev/sdb1.	If	the	drive	referred	to	as	/dev/sda
is	removed	from	the	chain,	then	the	latter	partition	is	automatically	renamed	/dev/sda1	at	reboot.)

Steps	for	partitioning

1.	 Use	 cfdisk 	or	another	program	to	partition	free	space
2.	 Run	the	 mkfs 	command	to	format	the	partition(i.e.	mkfs.ext2	/dev/sdb5)
3.	 Create	a	mount	point	(i.e.	 mkdir	testmount )
4.	 Run	the	mount	command	(i.e.	 mount	/dev/sdb5	testmount )

These	steps	are	clarified	during	the	assignment.

Making	mounts	persist

When	issuing	a	mount	command	at	the	command	line,	the	mount	will	only	persist	until	the	machine	is
rebooted.	If	we	always	want	that	particular	mount	to	persist	we	can	put	an	entry	in	 /etc/fstab .

cat	/etc/fstab

Ubuntu	now	uses	UUID	to	identify	partitions.

Making	mounts	persist

Why	use	a	UUID	instead	of	/dev/sda1	to	identify	the	device?	Say	that	that	you	plugged	another	disk	into	your
computer	and	booted	up.	It	probably	won’t	happen,	but	it	is	possible	that	the	new	disk	might	be	identified	as
/dev/sda,	causing	the	system	to	look	for	the	contents	of	/boot	on	the	first	partition	of	that	disk.

This	is	why	the	partitions	created	during	installation	are	identified	by	a	UUID	in	the	/etc/fstab	file.

To	find	out	what	the	UUID	is	for	all	devices	we	can	use	the	block	id	command:

sudo	blkid

Making	mounts	persist

Here	is	an	example	entry	using	the	device	name	instead	of	the	UUID.

/dev/sda6	/home/joe/op	auto	defaults	0	0

Here	is	a	short	explanation:

filesystem:	 /dev/sda6 	-	the	device	we	are	going	to	mount
mount	point:	 /home/joe/op 	-	the	mount	point
type:	 auto 	-	automatically	detect	what	fs	type	this	is	(ext3	or	ext4	for	example)



options:	 defaults 	-	options	associated	with	mount
dump,pass:	 0	0 	-	advanced,	usually	these	are	always	0	for	added	devices.

MSDOS

Legacy	partitioning	system	(still	widely	used)
Each	drive	or	device	can	have	up	to	4	primary	partitions	or	3	primary	partitions	and	1	extended
partition.
Extended	partitions	expand	the	capacity	of	the	devices	allowing	for	more	than	4	partitions.	An	extended
partition	can	have	many	logical	partitions.	Often	listed	as	unlimited.
Primary	and	the	one	Extended	partitions	are	always	numbered	1-4.
Logical	partitions	are	always	number	5	or	higher.

What	is	the	MBR	-	Old	Way

The	information	about	how	a	hard	disk	has	been	partitioned	is	stored	in	its	first	sector	(that	is,	the	first
sector	of	the	first	track	on	the	first	disk	surface).	The	first	sector	is	the	master	boot	record	(MBR)	of	the
disk;	this	is	the	sector	that	the	BIOS	reads	in	and	starts	when	the	machine	is	first	booted.	The	master	boot
record	contains	a	small	program	that	reads	the	partition	table,	checks	which	partition	is	active	(that	is,
marked	bootable),	and	reads	the	first	sector	of	that	partition,	the	partition’s	boot	sector	(the	MBR	is	also	a
boot	sector,	but	it	has	a	special	status	and	therefore	a	special	name).	This	boot	sector	contains	another	small
program	that	reads	the	first	part	of	the	operating	system	stored	on	that	partition	(assuming	it	is	bootable),
and	then	starts	it.

What	is	the	GPT	-	New	Way

To	see	which	partitioning	scheme	we	are	using	use	the	following	command:	 sudo	parted	-l .	If	we	see	the	 ms-
dos 	partition	table	this	is	what	we	are	using	which	is	the	old	MBR	method.	If	you	see	gpt,	you	are	using	the
GPT,	GUID	partition	table.

Advantages	to	the	GPT:

GPT	allows	for	large	disks	and	large	partitions,	more	than	2	TB.
GPT	allows	unlimited	number	of	partitions.
There	are	other	advantages	to	using	GPT	for	large	systems	that	reduce	problems	and	help	in	error
recovery	including	GPT	data	structures	are	stored	twice	on	the	disk.

Creating	a	filesystem

After	we	create	the	partition,	we	then	proceed	to	put	a	filesystem	on	it.	This	is	accomplished	with	the	 mkfs
command	(or	some	derivative).	What	types	are	available?

ntfs
ext3
ext4
btrfs
vfat
more…

Inodes

First	watch	this	video.

The	filesystem	is	made	up	of	inodes	-	a	slot	that	contains	metadata	about	a	file.	The	inode	contains	the
following.

size
device	id
UID,	GID
A	pointer	to	the	file	location	on	the	Hard	Drive

https://www.youtube.com/watch?v=ymYZPtrvgec


Other	info	found	using	 ls	-l 	and	 stat
ls	-lai 	will	give	us	the	inode	number	and	the	metadata.
stat	f1.txt 	will	give	us	additional	metadeta	information.

And	a	bunch	of	other	cool	stuff	about	the	file.
THE	INODE	DOES	NOT	STORE	THE	FILENAME.

Inodes

df	-i 	will	show	us	how	many	inodes	we	have	and	how	many	are	available	to	us.

We	cannot	have	more	files	than	inodes.
It	is	more	common	to	use	all	the	disk	space	and	still	have	inodes	left.

Viewing	inodes

All	unique	files	and	directories	on	the	same	partition	will	have	a	unique	inode	number

ls	-lai	/

The	first	number	you	see	on	each	line	is	the	inode	number.	The	reason	you	see	multiple	“1’s”	and	“2’s”	is
because	of	the	system	partitions	created	when	the	computer	starts.

Use	the	spaces	inside	quotes	to	refine	your	results
mount	|	grep	-e	"sys	"	-e	"proc	"	-e	"dev	"

root(/)	generally	has	an	inode	of	2

Viewing	inodes

If	you	find	two	filenames	on	the	same	partition	with	the	same	inode	number	then	the	files	are	not	actually
different	files,	but	the	same	file	with	different	names.	Such	as	a	hardlink	link.	Once	created,	a	hardlink	will
always	link	to	the	file	using	the	inode	number	even	if	you	rename,	move	or	delete	the	original	filename.

Symbolic	links,	however,	get	a	unique	inode	number	and	link	to	the	name	of	the	file	not	the	file	itself.	So	if
you	change	the	original	filename	the	symbolic	link	is	broken.

Viewing	inodes

If	they	have	the	same	inode	number	and	you	know	for	sure	that	they	are	not	the	same	file,	then	they	are	on
different	partitions.

Log	into	scratch	-

mkdir	inode-fun
cd	inode-fun
touch	sunshine.txt
touch	rainbow.txt
ln	-s	sunshine.txt	inode-symlink
ln	rainbow.txt	inode-hardlink
ls	-lai
ls	-lai	../	|	grep	inode-fun

Viewing	inodes

Examine	inode	numbers	of	the	files	-

What	is	the	inode	number	of	each	file
Do	any	of	the	files	have	the	same	inode	number?
If	so,	why?
Remember	that	dot(.)	stands	for	self	and	dotdot(..)	stands	for	parent	directory.	They	are	hard	links.



Files	can	have	multiple	names.	This	is	why	the	inode	doesn’t	store	the	filename.

ls	-lai	/
Look	again	at	dot(.),	dotdot(.).	These	stand	for	 / 	because	there	is	nothing	above	the	root	of	the
computer	in	the	tree.	Notice	that	it	is	very	different	than	 /root 	(the	home	directory	of	the	root	user).

Renaming	and	Moving	Files

A	file’s	inode	number	stays	the	same	when	we	rename	the	file	and	when	moved	to	another	directory	on	the
same	device(partition).

Remember	the	inode	number	for	 rainbow.txt 	and	 sunshine.txt
cd	~/inode-fun
ls	-lai
echo	"hardlinks	are	amazing"	>>	rainbow.txt
cat	rainbow.txt
mv	rainbow.txt	../
ls	-lai	../rainbow.txt

What	happened	to	the	inode	number?

Renaming	and	Moving	Files

ls	-lai
What	happened	to	the	inode	number	of	inode-hardlink?

cat	inode-hardlink
Is	it	still	linked?	Why	or	Why	not?

echo	"Inodes	are	cool!"	>>	sunshine.txt
cat	inode-symlink
mv	sunshine.txt	sun.txt
cat	sun.txt
ls	-lai

What	happened	to	the	inode	number	of	inode-symlink	and	sun.txt?
cat	sun.txt
cat	inode-symlink

Is	it	still	linked?	Why	or	Why	not?

Renaming	and	Moving	Files

Choose	one	of	the	inode	numbers	and	do	a	search.	-	 find	/	-inum	147649

Where	is	the	NAME	of	the	file?

The	filename	or	path	of	the	file	is	NOT	in	the	inode.	It’s	NOT	in	the	data	blocks	(With	the	contents	of	the	file
on	the	Hard	Drive).	It’s	in	the	metadata	of	the	directory.

You	see,	the	metadata	of	the	directory	contains	a	table	of	the	filenames	in	the	directory,	and	the	matching
inodes.	Think	of	it	as	a	table,	and	the	first	two	entries	are	always	“.”	and	“..”	The	first	points	to	the	inode	of
the	current	directory,	and	the	second	points	to	the	inode	of	the	parent	directory.	The	remainder	of	the
entries	in	the	table	are	the	directories	and	files	within	the	current	directory.

Where	is	the	NAME	of	the	file?

When	you	move	or	rename	a	file	within	the	same	partition,	you	don’t	actually	move	the	data	(contents).	That
would	be	Slow.	You	just	create	the	-name,inode-	entry	in	a	new	directory,	and	delete	the	old	entry	inside	the
old	directory.	In	other	words,	moving	a	gigabyte	file	takes	very	little	time.	In	the	same	way,	you	can
move/rename	directories	very	easily.	That’s	why	“mv	/usr	/Old_usr”	is	so	fast,	even	though	“/usr”	may
contain	(for	example)	57981	files.

When	you	copy	a	file	-	it	does	create	a	duplicate	of	the	same	data	and	the	copy	gets	its	own	inode	number.



To	copy	a	gigabyte	file	or	directory	takes	time	because	every	byte	must	be	copied.

Where	is	the	NAME	of	the	file?

When	you	create	a	hard	link,	it	just	creates	a	new	name	in	the	table	linked	to	an	already	existing	inode
number	without	moving	or	copying	the	file.	So	if	you	move,	rename	or	delete	one	of	the	hardlink	names	-	all
other	names	linked	to	that	inode	still	work	and	the	data	is	still	accessible.

Symbolic	links	break	when	you	move,	rename,	or	delete	the	file	that	it	links	to	because	they	are	linked	to	the
filename	not	the	inode	number.

Where	is	the	NAME	of	the	file?

ln	-s	sun.txt	sun-symlink
cat	sun-symlink
cp	sun.txt	rain.txt
echo	"This	file	is	a	copy"	>>	rain.txt
cat	rain.txt
cp	rain.txt	wind.txt
cat	sun.txt
ls	-lai

What	is	the	inode	number	of	rain.txt?	Is	it	linked	to	sun.txt	or	just	a	copy	of	the	file?

Where	is	the	NAME	of	the	file?

ln	rain.txt	rain-hardlink
echo	"Now	it	has	a	hard-link	too"	>>	rain.txt
cat	rain-hardlink
ls	-lai

What	is	the	inode	number	of	rain-hardlink?	Is	it	linked	to	rain.txt	or	just	a	copy	of	the	file?
rm	sun.txt
cat	sun-symlink

Why	does	it	not	work	anymore?
What	will	happen	to	rain-hardlink	if	we	delete	rain.txt?

rm	rain.txt
ls	-lai
cat	rain-hardlink

Why	does	it	still	work	when	the	symlink	did	not?

Inode	Metadata

Run	the	command	 ls	-la	~/inode-fun .	What	is	the	field	after	the	permissions?	This	is	count	of	hard	links	to
the	file.

Look	at	this	output	-	Yours	will	look	slightly	different:

				drwxrwxr-x		3	joe		joe								4096	Oct	22	11:43	.
				drwxrwxr-x	10	joe		joe								4096	Oct	20	11:20	..
				-rw-rw-r--		2	joe		joe										22	Oct	22	11:23	inode-hardink
				lrwxrwxrwx		1	joe		joe										14	Oct	22	11:21	inode-symlink	->	sunshine.txt
				drwxrwxr-x		6	joe		joe								4096	Oct		6	10:15	it1100
				-rw-rw-r--		1	joe		joe										64	Oct	22	11:21	rain-hardlink
				lrwxrwxrwx		1	joe		joe											7	Oct	22	11:43	sun-symlink	->	sun.txt
				-rw-rw-r--		1	joe		joe										64	Oct	22	11:43	wind.txt	

Inode	Metadata

We	should	see	that	each	directory	has	at	least	(2)	hard	links,	one	for	the	name	reference	contained	in
the	parent	and	one	for	the	reference	to	self	 . .	It	will	also	have	one	for	every	child	directory	that



references	its	parent	with	a	 .. .	And	one	for	each	hardlink	to	the	directory.
Each	file	will	have	at	least	(1)	hard	link	-	the	filename	itself	that	we	see	here	in	the	parent	directory.
What	does	the	3	mean	on	line	1?
How	about	the	10	and	6?	What	can	we	surmise	about	these	directories?
Where	do	these	hardlinks	most	likely	exist?
Why	does	the	file	inode-hardlink	have	a	2	instead	of	just	a	1?
Why	doesn’t	rain-hardlink	have	a	2	also?
Why	doesn’t	inode-symlink	have	a	2	also?


