
User	Accounts

Even	a	single-user	workstation	(Desktop	Computer)	uses	multiple	accounts.	Such	a	computer	may	have	just
one	user	account,	but	several	system	accounts	help	keep	the	computer	running.

Accounts	enable	multiple	users	to	share	a	single	computer	without	causing	each	other	too	much	trouble.

User	Accounts

The	Users	in	a	Linux	system	are	stored	in	the	 /etc/passwd 	file.	If	you	are	on	your	own	VM	-	somewhere	near
the	bottom	you	should	see	yourself	and	joe.

On	a	brand	new	install	you	will	see	many	users	listed.	Of	course	if	you	recall,	we	only	added	ourselves	and
joe.	So	what	are	all	these	other	users	for?	These	users	are	added	because	we	don’t	want	to	give	sudo	power
to	all	of	our	programs.	So	each	program	installed	gets	its	own	user	with	its	own	limited	permissions.	This	is
a	protection	for	our	computer.

User	Info	 /etc/passwd

Examine	the	 /etc/passwd 	file	using	 cat 	or	 less .	Here	is	what	we	are	seeing:

It	is	colon	 : 	separated.	So	each	 : 	denotes	a	new	column.
username
password

The	x	is	just	a	place-holder.	The	password	is	not	really	in	this	file
User	ID	(UID)

Just	like	every	computer	needs	a	unique	ip	address,	every	user	needs	a	unique	id.

User	Info	 /etc/passwd

Group	ID	(GID)
Every	user	belongs	to	its	own	group,	with	its	own	group	id

Comment	field
This	is	the	Full	name,	phone	number,	office	number,	etc.	It	is	okay	if	it	is	blank.

Home	Directory
This	is	the	location	of	the	users	home	directory	-	This	is	how	we	can	know	the	full	path	of	any	users
home	directory	-	/home/smorgan	vs	/home/s/smorgan.

Default	Shell
When	a	user	ssh’s	into	our	machine	-	this	is	where	it	is	specified	which	shell	they	open.	The	Ubuntu
default	is	/bin/bash.	We	can	change	our	own	shell	and	we	can	also	disable	a	user’s	ability	to	ssh	in.

Passwords

If	passwords	are	not	stored	in	the	 /etc/passwd 	file	then	where	are	they	stored?

Passwords	are	actually	stored	in	 /etc/shadow .	Try	and	view	the	contents	of	this	file.	Do	you	notice	anything?

This	file	actually	requires	sudo	power	to	view	it.	This	is	an	obvious	precaution.	We	don’t	want	just	anyone
being	able	to	see	our	passwords.

However,	when	you	actually	get	to	see	inside	the	file	-	the	passwords	are	encrypted.	So	not	even	the	root
user	can	see	your	password.

Passwords

Each	line	in	the	file	is	made	up	of	the	following:

username
password	(encrypted)
Date	of	the	last	password	change
Days	until	a	change	is	allowed
Days	before	change	required
Days	of	warning	before	pwd	expires
Days	between	expiration	and	deactivation	(optional)
Expiration	date	(optional)
A	reserved	field	(optional)

Passwords

If	you	are	wondering	how	17224	(or	something	similar)	could	possibly	be	a	date.	It	actually	refers	to	the
number	of	days	since	January	1,	1970.	So	17224	is	actually	January	27,	2017

Try	it:	 sudo	cat	/etc/shadow	|	grep	joe
Try	it:	 sudo	chage	-l	joe

LDAP

An	LDAP	(Lightweight	Directory	Access	Protocol)	Server	is	a	Linux	server	that	allows	centralized	user	login	/
permission	information.	All	the	usernames	and	passwords	are	stored	in	a	database.	There	are	several
reasons	to	have	a	centralized	user	database.

These	are	some	of	the	advantages	of	an	LDAP	system

Active	login	on	many	computers
Having	to	only	remember	one	username	and	one	password	is	a	handy	feature

File/profile	access	on	many	computers
Accessing	our	files	from	any	computer	is	great	when	someone	else	sits	in	our	regular	seat.

Adding	Users	to	a	network
Imagine	if	a	new	student	registers	for	class	-	What	kind	of	effort	would	that	take	to	manually	add
them	to	every	computer.	Imagine	10	computers,	20,	30,	100,	etc.

LDAP	(advantages)

Changing	your	password	on	a	network
Imagine	if	you	forgot	your	password	and	had	to	change	it.	What	would	it	take	to	change	it	on	those
10,	20,	30,	or	100	computers.	What	if	you	decided	to	only	change	it	on	the	ones	you	actually	use
then	one	time	someone	else	sits	in	your	seat	and	now	you	are	at	a	computer	with	the	old	forgotten
password.

Deactivating	a	user	account
Imagine	if	every	time	a	student	graduates	we	had	to	deativate	their	account	–	one	at	a	time	on	all
100	computers.

LDAP

The	CIT	department	uses	an	LDAP	Server	to	store	the	usernames,	passwords	and	files	of	all	the	CIT
students.	DSU	also	uses	a	centralized	user	database.	This	is	what	allows	us	to	log	in	to	any	computer	with	a
single	username	and	password.	This	is	what	allows	us	to	see	the	same	files	on	all	computers	once	we’ve
logged	in.
Using	an	LDAP	Server	makes	it	easier	to	administrate	mulitple	users	and	computers	on	a	network.

/etc/passwd	with	LDAP

Open	a	new	terminal	and	log	into	scratch.	Look	at	the	/etc/passwd	file.	Look	for	your	name.	It’s	not	there.
The	/etc/passwd	file	is	for	local	users	added	on	that	machine	only.

To	view	all	users	that	have	access	to	the	system	use

getent	passwd
getent	passwd	|	grep	joe
many	times	this	gives	us	the	same	information	as	contained	in	 /etc/passwd ,	but	if	using	a	centralized
database	for	user	accounts	(as	we	do),	you	can	get	lots	more	information.
Trying	grepping	getent	passwd	for	your	username	on	scratch.

/etc/passwd	with	LDAP

Try	these	additional	commands	on	scratch

whoami
Displays	the	username	of	the	current	user
This	is	helpful	if	your	prompt	doesn’t	tell	you	who	you	are	and	you	can’t	remember	if	you	logged	in
as	joe.
There	was	a	time	when	the	prompt	never	displayed	your	username.

who
Tells	you	who	else	is	logged	in	to	the	computer

w
Similar	to	who,	but	more	verbose	(more	information)

Groups

A	user	is	always	by	default	put	into	a	group	of	the	same	name.
Just	like	all	users	must	have	a	unique	id,	all	groups	also	have	a	unique	id.
Users	can	be	in	multiple	groups.
Why	do	we	have	groups?

Groups	allow	us	to	give	unique	permissions	to	a	“group”	of	users.

The	list	of	groups	is	stored	in	 /etc/group

Groups

The	file	consists	of	the	following:

Group	name
password	(not	important	here)
Group	ID	(GID)
Users	in	the	group

The	 groups 	command	will	show	us	what	groups	we	are	members	of

Groups

In	Ubuntu	there	is	a	special	group	called	the	 sudo 	group.	This	is	the	 sudoers	list 	and	gives	users	of	that
group	 sudo	power 	a.k.a	 admin	privileges ,	 root	access ,	 superuser	privileges 	and	anything	else	that	might
sound	powerful.

cat	/etc/group	|	grep	sudo

In	distributions	such	as	bsd	and	redhat	the	sudo	group	is	called	the	 wheel 	group.	No	matter	the	name,	it	has
the	same	privileges.

High	Level	vs	Low	Level	Commands

High	level	programs/commands	provide	an	interface	to	assist	you	in	creating	new	users	and	groups	and	they
do	a	lot	of	things	automatically	for	you.	High	level	commands	are	most	commonly	used	by	administrators	for
one	time	changes.

Some	High	Level	Commands

adduser
deluser
addgroup
delgroup

High	Level	vs	Low	Level	Commands

Low	level	commands	require	that	you	set	each	option	manually	in	the	command	line.	If	you	fail	to	set	the
options	then	things	like	home	directories	and	passwords	may	not	be	created.	Low	level	commands	are
particularly	useful	for	automated	scripts	that	run	without	human	interaction.

Some	Low	Level	Commands

useradd
userdel
groupadd
groupdel

Adding	Users	and	Groups

When	you	add	a	new	user	it	will	automatically	create	the	user,	create	the	required	group	of	the	same	name,
add	all	the	required	entries	in	 /etc/passwd ,	 /etc/shadow ,	and	 /etc/group ,	create	the	home	directory,	copy
the	default	starter	files	from	 /etc/skel ,	prompt	you	for	the	new	password	and	ask	for	the	extra	info	about
the	user.

Just	like	everything	else	in	Linux	-	usernames	are	usually	lowercase.

Adding	Users	and	Groups

When	using	the	high	level	command	everything	is	properly	set	up	for	the	new	user.

adduser	frank
cat	/etc/passwd	|	grep	frank
cat	/etc/group	|	grep	frank
ls	-l	/home

What	is	frank’s	UID	and	GID?	Who	owns	frank’s	home	directory?

Adding	Users	and	Groups

To	add	a	group	use	the	addgroup	command

addgroup	students
addgroup	friends
cat	/etc/passwd

The	students	group	is	not	there.	It	is	not	a	user,	it	is	only	a	group.
cat	/etc/group	|	grep	students

Note	the	GID	of	students.	It	is	the	next	available	number.

Adding	Users	and	Groups

Add	another	new	user

adduser	sally
cat	/etc/passwd	|	grep	sally

What	do	you	notice	about	Sally’s	UID	and	GID?
Why	don’t	they	match?	Because	the	students	group	used	the	next	available	GID	without	using	a
UID.

cat	/etc/group
See,	Sally’s	GID	is	the	next	available	one.

ls	-l	/home

Adding	Users	To	Groups

There	are	a	few	different	ways	to	add	users	to	a	group.	The	easiest	is	using	the	addgroup	command.

The	format	of	this	command	is

addgroup	user	group

Try	it:

addgroup	sally	students
addgroup	scott	students
cat	/etc/group
addgroup	sally	sudo
cat	/etc/group	|	grep	sudo
cat	/etc/group	|	grep	sally
groups	sally

Adding	Users	To	Groups

The	 id 	command	shows	us	not	only	our	UID	but	also	the	GID	of	all	our	groups

Try	it:
id
id	sally

Deleting	Users	and	Groups

When	you	want	to	delete	a	user,	by	default	Linux	keeps	the	user’s	home	directory	and	all	the	files	they
created.

deluser	frank
ls	-l	/home

Frank’s	home	directory	still	exists	-	Who	owns	frank’s	home	directory	now?

Nobody	actually	owns	the	frank	directory	now.	It	is	owned	by	frank’s	UID	and	GID	but	Frank	doesn’t	exist.
This	is	why	we	have	UID’s	and	GID’s	because	frank	no	longer	exists	but	somebody	has	to	own	his	old	files.

Deleting	Users	and	Groups

So	what	happens	when	we	add	a	new	user

adduser	scott
cat	/etc/passwd	|	grep	scott

What	do	you	notice	about	Scott’s	UID	and	GID?
Yes	it	is	the	same	as	Frank’s	old	UID	and	GID.

cat	/etc/group	|	grep	scott
ls	-l	/home

Does	Scott	have	his	own	home	directory?
What	happened	to	the	frank	directory?	Who	owns	it	now?

Deleting	Users	and	Groups

If	we	wanted	Scott	to	own	Frank’s	files	this	is	a	good	side-effect.	But	normally	we	do	not	want	the	newest
user	owning	the	long	time	employee’s	files.

If	it	causes	this	much	trouble	-	why	not	have	Linux	autodelete	the	files	when	you	remove	a	user?

There	might	be	something	important	in	that	user’s	files
Other	people	might	be	actively	dependent	on	those	files

For	that	reason	Linux	doesn’t	automatically	delete	any	files.

So	the	deluser	command	offers	some	options	that	allow	us	to	choose	what	to	do	with	those	files	as	we	delete
the	user.

Deleting	Users	and	Groups

To	see	those	options	-	check	out	the	man	page	-

man	deluser

This	is	a	great	starter	man	page.	It	is	simple	and	easy	to	read.

The	first	thing	to	remember	while	learning	man	pages	is	to	not	worry	about	reading	or	understanding
everything.	Let’s	hunt	for	just	the	things	we	want.	The	synopsis	at	the	top	show	us	how	to	use	the	command:

deluser	[options]	[–force]	[–remove-home]	[–remove-all-files]	[–backup]	[–backup-to	DIR]	user

Deleting	Users	and	Groups

This	tells	us	that	the	command	comes	first	and	the	user	comes	last,	with	options	in	the	middle.	It	also	tells
us	that	we	can	use	all	of	the	above	options	in	conjunction	with	each	other.	To	know	what	these	options	do,
scroll	down	the	page	and	read	the	descriptions.	Which	options	will	help	us	remove	the	home	directory	of	a
user	and	which	ones	will	help	us	make	a	backup	of	the	files	first?

From	this	page	we	learn	that	the	best	way	to	delete	a	user	and	remove	his	home	directory	that	we	don’t	care
about	is:

deluser	--remove-home	frank

Deleting	Users	and	Groups

Try	it:

adduser	jimmy
cat	/etc/passwd	|	grep	jimmy
ls	-l	/home
deluser	--remove-home	jimmy
cat	/etc/passwd	|	grep	jimmy
ls	-l	/home

Deleting	Users	and	Groups

To	delete	a	group	is	simple.	But	first	let’s	add	some	users	to	the	group	we	want	to	delete.

addgroup	sally	friends
addgroup	scott	friends

See	that	sally	and	scott	are	members	of	the	friends	group

cat	/etc/group
groups	sally
groups	scott

Deleting	Users	and	Groups

Now	delete	the	friends	group

delgroup	friends
cat	/etc/group
groups	sally
groups	scott

You	can	see	that	the	friends	group	is	cleanly	removed	and	all	users	that	were	part	of	the	group	are	no	longer
part	of	the	group.

Working	as	Other	Users

sudo 	-	allows	us	to	execute	a	single	command	as	root

sudo	cat	/etc/shadow

su 	-	allows	us	to	switch	users,	without	any	options	or	arguments	we	will	switch	to	root.

sudo	su	- 	-	When	you	have	switched	to	the	root	user	you	will	see	a	hash	 # 	symbol	at	the	end	of
your	prompt.	This	signifies	that	you	are	the	root	user.
su	-	joe 	-	without	sudo	power	it	requires	joe’s	password.	 sudo	su	joe 	-	with	sudo	power	it	does
not.
Type	 exit 	to	return	to	your	own	user.	It	will	return	you	to	the	directory	you	were	in	at	the	time	you
switched.
While	it	is	possible	to	run	the	 su 	command	without	the	dash,	it	is	rare	to	do	so.	To	be	safe	when
changing	users,	you	should	always	run	it	like	 su	-	joe 	(with	the	dash)

Working	as	Other	Users

login 	-	allows	you	to	login	as	another	user.

sudo	login	joe 	-	This	command	requires	sudo	privileges.	It	also	requires	joe’s	password	as	well.
Notice	that	when	you	login	as	joe	-	It	prints	all	the	text	just	like	when	you	ssh	in	as	joe	and	you	also
switch	to	his	home	directory.
Type	 logout 	or	 exit 	to	return	to	your	own	user.	It	will	return	you	to	the	directory	you	were	in	at
the	time	you	switched.

ctrl+d 	-	ctrl+d	will	automatically	execute	the	appropriate	command:	‘logout’	or	‘exit’.

Working	as	Root

Root	user	(different	from	 / 	root	directory)	allows	you	to	perform	administrative	tasks.

Think	of	the	motto	-	“Sudo	Power	is	-	All	Power,	All	The	Time,	To	Do	All	Damage!!!”
There	is	nothing	a	root	user	cannot	do.

Normal	user	accounts	are	restricted	to	doing	only	what	is	considered	safe	for	the	system.	As	a	normal	user
you	won’t	have	the	power	to	permanently	break	the	computer.	Most	of	your	power	is	limited	to	breaking
your	own	$HOME	directory.

Working	as	Root

Before	you	ever	use	 sudo 	ask	yourself	if	you	really	need	root	access.	Is	this	something	that	logically	should
require	administrative	rights?

Sometimes	there’s	a	way	to	achieve	your	goal	without	superuser	privileges	such	as	using	copy	instead	of
move.
Or	most	likely	you	aren’t	typing	the	command	correctly	and	you	need	to	check	for	typos.

Working	as	Root

More	cautions:

Before	pressing	the	Enter	key	after	typing	any	command	as	root	double	check	it!	Linux	doesn’t	ask
“Are	you	sure?”.	It	always	follows	your	commands	exactly	as	you	type	them.
Never	run	a	suspicious	program	as	root.	Most	programs	don’t	require	root	privileges	to	run.	If	you
don’t	know	exactly	what	it	does	-	don’t	give	it	the	power	to	act	as	root.
Never	actually	 su 	to	root	unless	you	have	a	whole	string	of	commands	that	require	sudo	privileges.

Even	then	it	is	safer	to	type	 sudo 	just	in	case.
Use	root	privileges	for	as	brief	a	period	as	possible	then	get	back	out	to	normal.

Never	leave	a	root	shell	available	to	others.
Don’t	share	root	passwords.

More	about	passwords

Selection	of	a	good	password	is	critical
What	are	some	good	password	strategies?

Passwords	can	be	guessed	by	malicious	individuals	who	know	them	or	even	who	target	them	and	look	up
personal	information	in	telephone	books,	on	Web	pages,	and	so	on.
Although	Linux	encrypts	its	passwords	internally,	programs	exist	that	feed	entire	dictionaries	through
Linux’s	password	encryption	algorithms	for	comparison	to	encrypted	passwords.	If	a	match	is	found,	the
password	has	been	found.
The	best	way	to	choose	is	password	is	to	remember	the	key	points	that	many	systems	require	in	your
password.

8	or	more	characters.	The	longer	the	password,	the	more	difficult	it	is	to	guess.
Use	Upper	and	Lower	case.	This	adds	26	more	guesses	for	each	character.
Use	numbers	and	symbols.	20	or	more	additional	guesses	for	each	character.
avoid	personal,	guessable	passwords
avoid	repeated	or	sequential	characters
avoid	common	dictionary	words
avoid	runonsentences

More	about	passwords

Password	privacy	is	absolutely	important.

The	same	password	should	not	be	used	on	multiple	systems	because	doing	so	quickly	turns	a
compromised	account	on	one	computer	into	a	compromised	account	on	all	of	them.

It	can	be	tempting	to	use	the	same	password	for	everything.	However,	this	is	risky.	Sometimes	it	is
helpful	to	have	several	passwords	that	you	can	use.	So	the	loss	of	one	doesn’t	compomise	all	of	your
logins.

Writing	passwords	down	or	emailing	them	are	both	risky	practices.	Writing	a	password	on	a	sticky	note
stuck	to	the	computer’s	monitor	is	particularly	risky.
Spam	e-mails	sometimes	try	to	trick	users	into	revealing	passwords	by	claiming	that	an	email,	banking,
or	other	account	has	been	deactivated	or	compromised.
Users	should	never	reveal	their	passwords	to	others,	even	people	claiming	to	be	system	administrators—
this	is	a	common	scam,	but	real	system	administrators	don’t	need	users’	passwords.

More	about	passwords

Nobody	ever,	EVER	needs	your	password.	A	root	user	has	All	Power,	All	The
Time,	To	Do	All	Damage.	A	root	user	already	has	access	to	everything	necessary.
Keep	your	password	private.

If	someone	claims	to	need	your	password,	such	as	your	web	developer,	because	they	don’t	have	root	access.
First	make	sure	you	know	and	trust	this	person	first	-	in	most	cases,	a	separate	user	can	be	created,	a
public/private	key	pair	can	be	generated	to	allow	temporary	access	without	a	password,	or	use	can
temporarily	change	your	password	to	be	a	generic	password	that	doesn’t	match	any	other	login.

More	about	passwords

To	change	your	password	or	the	passsword	of	another	user	is	simple.

passwd 	-	change	your	own	password
sudo	passwd	joe 	-	change	joe’s	password

File	Permissions

Files	are	owned	by	a	particular	user,	and	also	a	group.
Permissions	are	set	on	a	file	that	determine	what	can	be	done	to	is	(or	a	directory).
Can	do	with	a	GUI	as	well,	but	much	more	common	via	CLI.

File	and	Directory	Permissions

There	are	three	general	classes	of	users:

The	user	who	owns	the	file	(“User”)
Users	belonging	to	the	file’s	defined	ownership	group	(“Group”)
Everyone	else	(“Other”)

File	and	Directory	Permissions

To	see	who	is	the	owner,	run	the	 ls	-l 	command

-rw-r--r--	1	ralph	admin	2558	Jan	8	07:41	filename

-rw-r–r–	represents	permissions.	drwxrwxrwx	format.	.	rw-	,	r–	,	r–
1	–	number	of	links
ralph	–	Owner	name	(if	user	name	is	not	a	known	user,	the	numeric	user	id	displayed)
admin	–	Group	Owner	name	(if	group	name	is	not	a	known	group,	the	numeric	group	id	displayed)
2558	–	number	of	bytes	in	the	file	(file	size)
Jan	8	07:41	–	when	file	last	modified
filename	–	File	name	/	pathname

Ownership

Files	and	processes	can	be	owned.	I.e.,	the	user	that	creates	them	is	the	default	owner.
The	UID	and	GID	are	what	are	attached	to	a	file.
As	root,	we	can	change	ownership	of	any	file	to	any	other	user.
As	normal	user,	we	can	change	the	group	ownership	of	a	file	that	we	own	to	be	owned	by	another	group
that	we	are	part	of.

Ownership

To	change	the	ownership,	we	use	the	 chown 	command.	(change	owner)
Examples:

chown	vader	wigs4me.txt
chown	yoda	I_am_green.png
chown	yoda:goodguys	rebelplans.doc 	#change	user	and	group
chown	:empire	death_star_plans.txt 	#just	change	group

Or	 chgrp
chgrp	empire	death_star_plans.txt

The	 -R 	option	on	both	those	commands	is	useful.

File	Permissions

File	ownership	is	meaningless	without	some	way	to	specify	what	particular	users	can	do	with	their	own	or
other	users’	files.	That	is	why	we	have	permissions.

View	the	output	of	 ls	-l 	again,	and	note	the	entries	in	the	first	column.
Read	allows	viewing

Write	allows	changing	content
Execute	allows	running	a	program	(if	it’s	a	file)	or	traversing	a	directory.

File	Permissions

File	Permissions	(Symbolic	Mode)

We	can	use	the	symbols	given	in	the	output	of	 ls	-l 	when	assigning	permissions:
chmod	u=r,g=rw,o=rwx	somefile.txt
chmod	u+rw,o=rwx	somefile.txt
chmod	g+r,o+r	somefile.txt

File	Permissions	(Octal	Mode)

Octal	notation	is	more	compace	than	symbolic	notation.
4	=	read	permission
2	=	write	permission
1	=	execute	permission

Then	you	can	set	permissions	using	this	octal	representation.
7	=	rwx,	6	=	rw,	5	=	rx
chmod	775	filename

Setting	permissions	to	none	is	done	with	a	0:
640	=	rw-	r–	—	-	user	group	others

Special	Permission	Rules

Directories	use	the	execute	bit	to	grant	permission	to	search	the	directory.	This	is	a	highly	desirable
characteristic	for	directories,	so	you’ll	almost	always	find	the	execute	bit	set	when	the	read	bit	is	set.

Permissions	on	symbolic	links	are	always	777	(rwxrwxrwx,	or	lrwxrwxrwx,	to	include	the	file	type	code).
This	access	applies	only	to	the	link	file	itself,	not	to	the	linked-to	file.	In	other	words,	all	users	can	read
the	contents	of	the	link	to	discover	the	name	of	the	file	to	which	it	points,	but	the	permissions	on	the
linked-to	file	determine	its	file	access.	Changing	the	permissions	on	a	symbolic	link	affects	the	linked-to
file.

More	Special	Permission	Rules

Many	of	the	permission	rules	don’t	apply	to	root.	The	superuser	can	read	or	write	any	file	on	the	computer—
even	files	that	grant	access	to	nobody	(that	is,	those	that	have	000	permissions).	The	superuser	still	needs
an	execute	bit	set	to	run	a	program	file.

More	examples

Without	using	octal	mode,	these	are	the	rules:

A	code	indicating	the	permission	set	you	want	to	modify—u	for	the	user	(that	is,	the	owner),	g	for	the
group,	o	for	other	users,	and	a	for	all	permissions
A	symbol	indicating	whether	you	want	to	add	(+),	delete	(-),	or	set	the	mode	equal	to	(=)	the	stated
value
A	code	specifying	what	the	permission	should	be,	such	as	the	common	r,	w,	or	x	symbols,	or	various
others	for	more	advanced	operations

What	if?

We	assign	ownership	to	a	file/dir	and	then	delete	that	user	or	group?
We	remove	the	execute	permission	on	a	directory?
We	create	a	symbolic	link?

What	is	output	of	 ls	-l
Do	permissions	on	link	affect	target?
What	if	I	change	permissions	on	target?

How	do	we	test	execute	permissions?
We	set	permissions	as	000.	Can	we	access	as	root?

One	more	tidbit

A	user	mask	or	 umask 	sets	the	default	permissions	on	a	file	when	it	is	created.	The	umask	is	the	value	that	is
removed	from	666.	So	if	the	umask	is	022,	the	files	will	all	be	644.	Directories	will	be	removed	from	777,	so
would	be	755.

You	can	adjust	the	umask	by	using	the	 umask 	command	from	the	terminal.	To	make	it	persist,	you	would
need	to	edit	 .bashrc 	or	some	such	location.

