
Disks	and	File	Systems

Steps:

Install	a	physical	drive
Partition	it
Create	a	file	system	on	the	partition
Mount	the	filesystem	in	the	root	partition
Use	FS
Umount	FS

What	is	a	partition?

A	logical	division	of	a	hard	disk.	The	OS	treats	a	partition	as	if	it	were	a	distinct	physical	device.

Why	partition?

Different	OS’s	on	each	partition
Separate	system	data	from	user	space	data	(i.e.	home	drives)
Protection	(in	case	of	failure,	or	corruption)
Able	to	grow	or	resize	partitions
Better	performance

More	reasons	for	partitioning	(from	tldp.org)

Encapsulate	your	data.	Since	file	system	corruption	is	local	to	a	partition,	you	stand	to	lose	only	some	of
your	data	if	an	accident	occurs.

Increase	disk	space	efficiency.	You	can	format	partitions	with	varying	block	sizes,	depending	on	your
usage.	If	your	data	is	in	a	large	number	of	small	files	(less	than	1k)	and	your	partition	uses	4k	sized
blocks,	you	are	wasting	3k	for	every	file.	In	general,	you	waste	on	average	one	half	of	a	block	for	every
file,	so	matching	block	size	to	the	average	size	of	your	files	is	important	if	you	have	many	files.

More	reasons	for	partitioning	(from	tldp.org)

Limit	data	growth.	Runaway	processes	or	maniacal	users	can	consume	so	much	disk	space	that	the
operating	system	no	longer	has	room	on	the	hard	drive	for	its	bookkeeping	operations.	This	will	lead	to
disaster.	By	segregating	space,	you	ensure	that	things	other	than	the	operating	system	die	when
allocated	disk	space	is	exhausted.

Linux	Partitions

In	Linux,	at	least	1	partition	is	required	for	the	 / .
Mounting 	is	the	action	of	connecting	a	filesystem	to	a	particular	point	in	the	 / 	root	filesystem.	I.e.	When
a	usb	stick	is	inserted,	it	is	assigned	a	particular	mount	point	and	is	available	to	the	filesytem	tree.

Partition	Details

PC	style	machines	used	to	use	DOS	partitions
Still	seen	today	but	largely	has	been	replaced	by	GPT
4	primary	partitions

One	of	these	4	can	be	used	as	an	extended	partition
Any	number	of	logical	may	be	created	in	the	extended	partition

Primary	vs	Logical

One	primary	partition	of	a	hard	drive	may	be	subpartitioned.	These	are	logical	partitions.	This	effectively
allows	us	to	skirt	the	historical	four	partition	limitation.

More	about	devices

Device	naming	conventions
Dependent	on	hardware	used
Partitions	are	numbered

/dev/sda1	(refers	to	first	partition	of	first	SATA	or	SCSI	hd)
/dev/sdc3	(refers	to	third	partition	of	third	SATA	or	SCSI	hd)

Partition	tools

fdisk
cfdisk
parted	(also	has	a	gparted	GUI)
sfdisk

Filesystem	Types

Once	we	have	partitioned	the	disk,	then	we	choose	the	way	it	should	be	formatted.	What	type	of	data
organization	do	we	want	on	the	disk?

Types	to	choose	from:

ext3:	old	linux
ext4:	linux	default
ntfs:	windows	default
vfat:	flash	drives,	cameras,	minimal
fat:	old	dos	(windows)
etc	…

The	EXT	filesystem

Data	is	organized	for	the	OS
Superblocks

The	EXT	filesystem	tools

mkfs	-t	ext4	/dev/sdc1
Format	the	disk	with	type	ext4

mount
makes	device	part	of	/	tree

umount
removed	device	from	fs	tree

tune2fs
Tune	various	parameters	(beyond	our	scope)

What	is	an	inode?

The	filesystem	is	made	up	of	inodes.
Inodes	contains	metadata	about	a	file.

size
dev	id
UID,	GID
OTher	stuff
DOES	NOT	STORE	FILENAME.

Viewing	inodes

df	-i 	will	show	us	how	many	inodes	we	have	and	how	many	available	to	us.
Can	we	have	more	files	than	inodes?
ls 	doesn’t	access	inode	metadata,	but	 ls	-l 	does.

ls	-i 	will	give	us	information	about	inode
stat	f1.txt 	will	give	us	metadeta	information.

More	testing	with	inodes

Examine	inodes	when:
we	create	a	symbolic	link?
we	create	a	hard	link?

So,	files	can	have	multiple	names.

Other	inode	implications

An	inode	may	have	no	links
A	files	inode	number	stays	the	same	when	moved	to	another	directory	on	the	same	device.
root	generally	has	an	inode	of	2?	(ls	-lai	/)

More	Inode	stuff

Where	is	the	NAME	of	the	file.	Or	the	Path?	It’s	NOT	in	the	inode.	It’s	NOT	in	the	data	blocks.	It’s	in	the
directory.	That’s	right.	A	“file”	is	really	in	three	(or	more)	places	on	the	disk.

You	see,	the	directory	is	just	a	table	that	contains	the	filenames	in	the	directory,	and	the	matching	inode.
Think	of	it	as	a	table,	and	the	first	two	entries	are	always	“.”	and	“..”	The	first	points	to	the	inode	of	the
current	directory,	and	the	second	points	to	the	inode	of	the	parent	directory.

One	more	piece	of	information

When	you	create	a	hard	link,	it	just	created	a	new	name	in	the	table,	along	with	the	inode,	without	moving
the	file.	When	you	move	a	file	(or	rename	it),	you	don’t	copy	the	data.	That	would	be	Slow.	You	just	create
the	(name,inode)	entry	in	a	new	directory,	and	delete	the	old	entry	in	the	table	inside	the	old	directory
entry.	In	other	words,	moving	a	gigabyte	file	takes	very	little	time.	In	the	same	way,	you	can	move/rename
directories	very	easily.	That’s	why	“mv	/usr	/Old_usr”	is	so	fast,	even	though	“/usr”	may	contain	(for
example)	57981	files.

Inode	Examples

Create	a	dir	and	cd	into	it
What	does	output	of	 ls	-id	. 	show?
Cd	back	to	parent	directory	and	 ls	-id	testdir ,	should	show	same	inode	number

Now	do	an	 ls	-la 	on	that	directory.	What	is	the	field	after	the	permissions?	This	is	count	of	hard	links
to	the	file.

We	should	see	that	there	are	(2)	hard	links,	one	for	filename	and	one	for	 . .

Inode	Examples

Look	at	this	output:

drwxrwxr-x		6	joe		joe								4096	Oct		6	10:15	it1100
drwxrwxr-x	41	joe		joe								4096	Oct	22	11:22	lab6

What	does	the	41	mean	on	line	2?

Create	a	dir	(look	at	that	column),	create	subdir	(look),	create	sub,subdir(look)

Finding	with	inodes.

find	/	-inum	147649

Steps	for	partitioning	More	Detailed

1.	 Use	cfdisk	or	another	program	to	partition	free	space
2.	 Run	the	 mkfs 	command	to	set	up	the	filesystem(i.e.	mkfs.ext2	/dev/sdb5)
3.	 Create	a	mount	point	(i.e.	 mkdir	testmount)
4.	 Run	the	mount	command	(i.e.	 mount	/dev/sdb5	testmount)

Making	mounts	persist

When	issuing	a	mount	command	at	the	command	line,	the	mount	will	only	persist	until	the	machine	is
rebooted.	If	we	always	want	that	particular	mount	to	persist	we	can	put	an	entry	in	 /etc/fstab .

See	 /etc/fstab
Here	is	an	example	entry

/dev/sda6	/home/joe/op	auto	defaults	0	0

Fstab	explained

Here	is	a	short	explanation:

/dev/sda6 	-	the	device	we	are	going	to	mount
/home/joe/op 	-	the	mount	point
auto 	-	automatically	detect	what	type	fs	this	is	(ext3	or	ext4	for	example)
defaults 	-	options	associated	with	mount
0	0 	-	advanced,	usually	these	are	always	0.

One	more	note	about	fstab

Ubuntu	now	uses	UUID	to	identify	partitions.	To	find	out	what	the	UUID	is	for	a	particular	device	we	can
use:

sudo	blkid

Why	use	a	UUID	instead	of	/dev/sda1	to	identify	the	device?	Say	that	that	you	plugged	another	disk	into	your
computer	and	booted	up.	It	probably	won’t	happen,	but	it	is	possible	that	the	new	disk	might	be	identified	as
/dev/sda,	causing	the	system	to	look	for	the	contents	of	/boot	on	the	first	partition	of	that	disk.

What	is	the	MBR

The	information	about	how	a	hard	disk	has	been	partitioned	is	stored	in	its	first	sector	(that	is,	the	first
sector	of	the	first	track	on	the	first	disk	surface).	The	first	sector	is	the	master	boot	record	(MBR)	of	the
disk;	this	is	the	sector	that	the	BIOS	reads	in	and	starts	when	the	machine	is	first	booted.	The	master	boot
record	contains	a	small	program	that	reads	the	partition	table,	checks	which	partition	is	active	(that	is,
marked	bootable),	and	reads	the	first	sector	of	that	partition,	the	partition’s	boot	sector	(the	MBR	is	also	a
boot	sector,	but	it	has	a	special	status	and	therefore	a	special	name).	This	boot	sector	contains	another	small
program	that	reads	the	first	part	of	the	operating	system	stored	on	that	partition	(assuming	it	is	bootable),
and	then	starts	it.

Side	Note	about	MBR	Partitioning

We	have	been	examining	how	partitioning	has	been	done	using	the	MBR.	To	see	if	we	are	in-fact	using	the
MBR	partitioning	scheme	we	can	do	a	 sudo	parted	-l .	If	we	see	the	 ms-dos 	partition	table	this	is	what	we
are	using.	MBR	only	supports	addressing	2TB

There	are	new	and	better	alternatives	to	using	the	MBR	partition	table	such	as	the	GUID	partition	table
(GPT).

UEFI

Unified	Extensible	Firmware	Interface

Replaces	the	basic	input/output	system	(BIOS)
Developed	by	Intel	(ca.	1998)

UEFI	Advantages

Can	boot	from	large	disks	(over	2TB)
Now	uses	GPT	instead	of	MBR
CPU	independent
Flexible	pre-OS	environment	(including	networking)

UEFI	Booting

Unlike	BIOS,	UEFI	does	not	rely	on	a	boot	sector,	defining	instead	a	boot	manager	as	part	of	the	UEFI
specification.	When	a	computer	is	powered	on,	the	boot	manager	checks	the	boot	configuration	and,	based
on	its	settings,	loads	and	executes	the	specified	operating	system	loader	or	operating	system	kernel.	The
boot	configuration	is	a	set	of	global-scope	variables	stored	in	NVRAM,	including	the	boot	variables	that
indicate	the	paths	to	operating	system	loaders	or	kernels,	which	as	a	component	class	of	UEFI	applications
are	stored	as	files	on	the	firmware-accessible	EFI	system	partition	(Wikipedia)

UEFI	Can	do	things	BIOS	cannot

Can	read	a	partition	table
Can	access	files	in	some	specific	filesystems
Can	execute	code	in	a	particular	format

GPT

Supports	128	partitions
Supports	Zettabyte	hard	disks(one	billion	terabytes)
Usually	used	in	conjunction	with	UEFI
Can	be	used	on	BIOS

