
Week	7	Assignment
Objectives:
Design	and	use	regular	expressions

Description:
In	this	assignment	you	will	form	various	regular	expressions.	We	will	be	working	with	the	wordlist	found	on
most	linux	installations.	Mine	is	found	at	 /usr/share/dict/words .	If	you	do	not	have	this	file	you	can	install	it
with	a	 sudo	apt-get	install	wamerican .	All	of	the	regular	expressions	can	be	tested	by	doing	the	following
command:	 egrep	"EXPRESSION"	/usr/share/dict/words .	There	may	be	more	than	one	answer	for	a	particular
question.	You	should	NOT	use	any	other	pipes.	All	results	should	be	contained	within	a	single	regular
expression	unless	otherwise	indicated.	Each	question	will	be	coded	into	a	bash	function.	I.e.	the	first	regular
expression	would	be	put	in	a	function	named	 one .

1.	 Here	is	problem	one	that	I	am	going	to	walk	you	through.	Search	for	all	words	that	begin	with	the	string
“foo”	and	that	end	with	an	“s”,	I	would	type	the	command:

egrep	“^foo.*s$”	/usr/share/dict/words

I	would	look	at	it	to	see	if	I	am	getting	the	desired	results.	Once	I	am	sure	that	I	am	getting	the	desired
results	I	would	put	that	in	my	function	like	this:

				function	one	()	{
						egrep	"^foo.*s$"	/usr/share/dict/words	
				}

You	may	create	a	 main 	function	to	call	all	your	other	ones,	but	you	should	call	main	as	explained	in	previous
assignments.

Continue	for	all	the	questions	below:

1.	 Search	for	all	words	that	begin	with	the	string	“car”	and	that	end	with	an	“s”	(as	shown	above)
2.	 Look	for	all	words	that	contain	the	string	“rya”.
3.	 Find	all	words	that	contain	the	string	“mail”	or	“chick”.
4.	 Find	all	words	that	have	8	successive	characters	that	are	consonants
5.	 Find	all	words	that	have	exactly	15	characters.
6.	 Find	all	words	that	end	with	‘ux’.
7.	 Find	all	words	that	start	with	a	‘b’	or	a	’s’	and	have	a	‘zz’	somewhere	later	on	in	the	word.

8.	 Try	this	expression:	 ^(.).\1$ 	.	The		^		matches		the		beginning		of		the		line.		The		.		means		any
	character.		The		.		within		(		)		means		capture		this			as		a		sub​‐pattern.		The		next		.		matches		any
	character.		The		\1		refers		to		the		pattern		captured		in		the		(		).		The		$			means		match		the		end		of
	the		line.	Now	find	all	five	letter	words	that	start	and	end	with	the	same	two	letters,	except	that	the	last
2	letters	are	reversed	(a	palindrome).	 radar 	is	an	example.

9.	 Do	the	same	thing	as	number	8	but	find	all	words	that	start	and	end	with	the	same	3	letters	(the	last	3
letters	would	be	in	reverse	order	from	the	first	3).	The	word	could	be	6	or	7	characters	long.	Hint:	I	only
found	2	words	in	the	list	that	met	this	criteria.

10.	 Find	all	words	that	have	an	aeiou	(in	order).	Each	vowel	appears	only	once	in	the	word.	I	only	found	3.

11.	 Display	all	words	that	have	3	consecutive	double-letter	pairs	(like	“bookkeeper”	has	oo,	kk,	ee)?

12.	 Find	all	lowecase	[a-z]	words	that	have	an	apostrophe,	but	do	not	end	in	the	letter	’s’.

13.	 Find	all	words	that	consist	of	only	2	lowercase	letters.	(The	word	can	only	be	2	characters	long)

14.	 Validate	an	email.	The	function	 fourteen 	should	receive	an	string.	If	it	is	valid	email	print	out	‘email	is
valid ,	otherwise	print	out email	is	invalid.	(email	should	be	replaced	with	the	actual	email).

15.	 Validate	an	ip.	The	function	 fifteen 	should	receive	an	string.	If	it	is	valid	ip	print	out	‘ip	is	valid ,
otherwise	print	out ip	is	invalid.	(ip	should	be	replaced	with	the	actual	ip).

16.	 Validate	an	dnumber.	The	function	 sixteen 	should	receive	an	string.	If	it	is	valid	print	out	‘dnumber	is
valid ,	otherwise	print	out dnumber	is	invalid .	(dnumber	should	be	replaced	with	the	actual	dnumber.)	(A



dnumber	always	starts	with d	and	is	followed	by	8	digits).

To	see	if	you	are	doing	it	correctly	you	can	look	below	to	see	if	you	are	getting	similar	counts	for	functions
1-13.	You	could	pipe	all	your	function	calls	in	main	to	the	 wc 	command.

								190					190				1943
									28						28					249
									63						63					598
									17						17					192
								912					912			14593
									25						25					189
									39						39					344
									15						15						90
										2							2						15
										3							3						33
										5							5						62
									31						31					212
								112					112					336

This	should	be	uploaded	as	 week7/assignment.sh 	to	your	github	repo.


