
Introduction	to	CircleCI	Orbs
	What	are	CircleCI	Orbs?

CircleCI	orbs	are	a	vital	component	in	modern	Continuous	Integration	and	Continuous	Delivery	(CI/CD)
pipelines.	These	orbs	are	reusable	configurations	that	allow	you	to	define,	package,	and	share	various	parts
of	your	CI/CD	process,	such	as	jobs,	commands,	and	executors.	Think	of	them	as	building	blocks	that	make
your	CI/CD	pipeline	setup	modular	and	efficient.

Orbs	aren’t	limited	to	in-house	use;	you	can	publish	and	share	them	with	the	broader	development
community	through	the	CircleCI	Orb	Registry,	thereby	promoting	best	practices	and	reducing	the	need	to
reinvent	the	wheel	for	common	tasks.

CircleCI	Orbs	Documentation

	Why	Use	CircleCI	Orbs?

1.	 Consistency:	Orbs	ensure	that	your	CI/CD	pipelines	are	consistent	across	different	projects.	This
reduces	the	risk	of	configuration	errors	and	makes	pipelines	more	reliable.

2.	 Efficiency:	Instead	of	writing	complex	configuration	from	scratch	for	every	project,	you	can	leverage
pre-defined	orbs,	saving	time	and	effort.	This	can	lead	to	faster	development	cycles	and	quicker	time-to-
market.

3.	 Community	Collaboration:	Orbs	foster	community	collaboration.	You	can	use	existing	orbs	to
integrate	best	practices	into	your	projects,	and	you	can	also	contribute	by	creating	and	sharing	orbs
that	solve	common	development	challenges.

Getting	Started	with	Orbs	-	CircleCI	Blog

Anatomy	of	a	CircleCI	Orb
	What’s	inside	an	orb?

orb.yml:	This	YAML	file	defines	the	structure	and	components	of	an	orb.	It	contains	the	orb’s	name,	version,
and	a	description.	The	orb.yml	file	references	jobs,	commands,	and	executors.

Here’s	an	example	of	an	 orb.yml 	file	for	a	hypothetical	“my-orb”:

version:	2.1
orbs:
		my-orb:	your/awesome-orb@1.0.0
jobs:
		-	build:
						executor:	my-orb/default-executor
						steps:
								-	my-orb/awesome-step

Jobs:	Jobs	define	individual	steps	within	a	pipeline.	They	encapsulate	specific	actions,	such	as	building	an
application,	running	tests,	or	deploying	to	a	server.	You	can	think	of	jobs	as	modular	building	blocks	that
you	assemble	to	construct	a	complete	pipeline.

Commands:	Commands	define	reusable	shell	commands.	These	are	often	used	within	jobs	to	encapsulate
common	actions	that	are	performed	multiple	times	in	your	pipeline.	Commands	simplify	your	pipeline
configuration	and	make	it	more	readable.

Executors:	Executors	specify	the	environment	in	which	jobs	are	executed.	They	define	the	machine	or
Docker	image	where	the	job’s	commands	will	run.	Executors	provide	a	consistent	runtime	environment	for
your	jobs.

Creating	an	Orb	-	CircleCI	Docs

Using	Existing	Orbs
	How	to	use	orbs	from	the	Orb	Registry?

To	use	an	existing	orb	from	the	CircleCI	Orb	Registry:

https://circleci.com/docs/2.0/orbs-intro/
https://circleci.com/blog/getting-started-orbs/
https://circleci.com/docs/2.0/orb-author/#creating-an-orb


1.	 Search:	Begin	by	searching	for	orbs	related	to	your	project’s	needs	in	the	CircleCI	Orb	Registry.

2.	 Import:	Once	you	find	a	suitable	orb,	import	it	into	your	project’s	 .circleci/config.yml 	file.	This	is
done	by	specifying	the	imported	orb’s	namespace	and	version.	Importing	an	orb	makes	its	jobs,
commands,	and	executors	available	for	use	in	your	pipeline	configuration.

Here’s	an	example	of	importing	an	existing	orb	for	Docker	image	building:

version:	2.1
orbs:
		docker:	circleci/docker@0.1.3

1.	 Customization:	After	importing,	you	can	customize	the	imported	orb’s	components	to	fit	your	specific
requirements.	This	allows	you	to	fine-tune	the	orb’s	behavior	to	match	your	project’s	unique	needs.

Using	existing	orbs	not	only	accelerates	your	pipeline	setup	but	also	encourages	good	practices	and
standards,	as	the	orbs	are	typically	maintained	by	experts	or	the	open-source	community.

Using	Orbs	-	CircleCI	Docs

Implementing	Orbs	in	a	CI/CD	Pipeline
	Practical	examples	of	using	orbs

To	implement	orbs	in	a	CI/CD	pipeline,	consider	the	following	practical	examples:

1.	 Docker	Image	Building	and	Deployment:	You	can	use	an	existing	orb	for	Docker	image	building	and
deployment.	This	orb	encapsulates	the	necessary	steps	to	build	Docker	images,	tag	them,	and	deploy
them	to	a	container	registry	or	server.	By	importing	this	orb,	you	can	simplify	and	standardize	the
process.

Here’s	an	example	of	using	the	“docker”	orb	to	build	and	push	a	Docker	image:

version:	2.1
orbs:
		docker:	circleci/docker@0.1.3

workflows:
		version:	2
		build-and-deploy:
				jobs:
						-	docker/build-and-push:
										context:	my-docker-hub-context

1.	 Configuring	Pipeline	Jobs:	You	can	create	a	job	in	your	pipeline	configuration	that	uses	commands
from	an	orb.	For	example,	you	might	have	a	job	that	uses	a	specific	orb’s	command	to	run	integration
tests,	making	your	pipeline	configuration	concise	and	modular.

Here’s	an	example	of	a	job	that	uses	a	command	from	an	orb	to	run	integration	tests:

version:	2.1
orbs:
		my-orb:	your/awesome-orb@1.0.0

jobs:
		build-and-test:
				executor:	my-orb/default-executor
				steps:
						-	my-orb/run-integration-tests

By	leveraging	orbs,	you	streamline	your	pipeline	configuration	and	can	easily	update	it	as	needed,	all	while
maintaining	best	practices.

Orb	Authoring	Tutorial	-	CircleCI	Docs

Advanced	Orb	Features
	Going	beyond	the	basics

Parameterization:	Orbs	often	allow	you	to	customize	their	behavior	by	using	parameters.	For	example,

https://circleci.com/orbs/registry/
https://circleci.com/docs/2.0/orb-author/#using-orbs
https://circleci.com/docs/2.0/orb-author-tutorial/


you	can	specify	different	test	environments	or	deployment	targets	using	parameters.	This	flexibility
makes	orbs	highly	adaptable	to	your	project’s	unique	requirements.

Here’s	an	example	of	using	a	parameter	in	an	orb	to	specify	a	custom	database	URL:

version:	2.1
orbs:
		my-orb:	your/awesome-orb@1.0.0

jobs:
		test:
				executor:	my-orb/default-executor
				steps:
						-	my-orb/run-tests:
										db-url:	custom-db-url

Conditional	Execution:	Orbs	can	include	conditional	logic.	You	can	set	up	conditions	that	determine
when	a	job	or	step	should	run,	allowing	you	to	create	more	flexible	and	adaptive	pipelines.

Here

’s	an	example	of	conditional	execution	in	an	orb:

version:	2.1
orbs:
		my-orb:	your/awesome-orb@1.0.0

jobs:
		deploy:
				executor:	my-orb/default-executor
				steps:
						-	when:
										condition:	<<	pipeline.parameters.deploy-flag	==	'true'	>>
										steps:
												-	my-orb/deploy-app

Versioning	and	Updates:	When	using	orbs,	it’s	important	to	understand	version	management.	You	can
specify	which	version	of	an	orb	to	use	in	your	configuration.	This	allows	you	to	control	when	and	how
updates	to	an	orb	are	applied	to	your	pipeline.

Here’s	an	example	of	specifying	a	specific	orb	version	in	your	configuration:

version:	2.1
orbs:
		my-orb:	your/awesome-orb@1.0.0

Advanced	features	make	orbs	incredibly	powerful	and	adaptable	to	a	wide	range	of	use	cases.

Advanced	Orb	Concepts	-	CircleCI	Docs

Best	Practices	and	Tips
	Make	the	most	out	of	orbs

When	creating	your	own	orbs,	follow	best	practices	for	naming	conventions,	versioning,	and
documentation.	This	ensures	that	your	orbs	are	easy	to	understand	and	use.

Orb	Best	Practices	-	CircleCI	Docs

Keep	an	eye	on	updates	to	orbs	you	depend	on	and	regularly	review	your	pipeline	configurations	to
ensure	they	align	with	the	latest	best	practices.

https://circleci.com/docs/2.0/advanced-orb-concepts/
https://circleci.com/docs/2.0/best-practices-orbs/

