@)=y N@l = ACADEMY

Database Programming with
PL/SQL

7-3
Trapping User-Defined Exceptions

(@ =7 \@ B = ACADEMY . -
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Objectives

This lesson covers the following objectives:
e Write PL/SQL code to name a user-defined exception
e Write PL/SQL code to raise an exception

e Write PL/SQL code to handle a raised exception
* Write PL/SQL code to use RAISE_APPLICATION_ ERROR

OR Cl_e ACADEMY PLSQL S7L3 Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trapping User-Defined Exceptions

Purpose

* |n addition to the predefined Oracle errors, programmers
can create their own user-defined errors.

* User-defined errors are not automatically raised by the
Oracle server, but are defined by the programmer and
must be raised by the programmer when they occur.

With a user-defined error, the programmer creates an
error code and an error message.

* An example of a user-defined error might be
INVALID MANAGER_ID.

OR Cl_e ACADEMY PLSQL S7L3 Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trapping User-Defined Exceptions

Exception Types

This lesson discusses user-defined errors.

Exception

Description

Instructions for Handling

Predefined Oracle
server error

Non-predefined
Oracle server
error

Most common
PL/SQL errors (about
20 or so that are
named)

Other PL/SQL errors
(no name)

You need not declare these
exceptions. They are
predefined by the Oracle server
and are raised implicitly
(automatically).

Declare within the declarative
section and allow the Oracle
Server to raise them implicitly
(automatically).

User-defined error

Defined by the
programmer

Declare within the declarative
section, and raise explicitly.

(@) =J-\al =8 AcADEMY

PLSQL S7L3
Trapping User-Defined Exceptions

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trapping User-Defined Exceptions

e PL/SQL allows you to define your own exceptions.

* You define exceptions depending on the requirements of
your application.

Declare Raise Reference
Declarative section Executable section Exception-handling
section

Name the Explicitly raise the Handle the raised

exception. exception by using exception.
the RAISE
statement.

ORACLGO ACADEMY PLSQL 5713 Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trapping User-Defined Exceptions

Trapping User-Defined Exceptions

* One example of the need for a user-defined exception is
during the input of data.

e Assume your program prompts the user for a department
number and name so it can update the name of the
department.

DECLARE
V_hame VARCHAR2(20) := “Accounting”;
v_deptno NUMBER := 27;

BEGIN
UPDATE departments
SET department _name = v_name
WHERE department _id = v_deptno;
END;

(@) =J-Nal M=l ACADEMY pisqL57L3

Trapping User-Defined Exceptions

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trapping User-Defined Exceptions

 What happens if the user enters an invalid department
number?

* Oracle doesn't see this as an error.

* You will need a user-defined error to catch this situation.

DECLARE
V_hame VARCHAR2(20) := “Accounting”;
v_deptno NUMBER := 27;

BEGIN
UPDATE departments
SET department _name = v_name
WHERE department _id = v_deptno;
END;

(@) =J-Nal M=l ACADEMY pisqL57L3

Trapping User-Defined Exceptions

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trapping User-Defined Exceptions

 What happens when the user enters an invalid department?
 The code as written doesn't produce an Oracle error.

* You need to create a user-defined error to handle this
situation.

* You do this by:

1. Declaring the name of the user-defined exception within the
declarative section.

e_invalid _department EXCEPTION;

2. Using the RAISE statement to raise the exception explicitly
within the executable section.

IF SQL%NOTFOUND THEN RAISE e_invalid _department;

OR Cl_e ACADEMY PLSQL S7L3 Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trapping User-Defined Exceptions

Trapping User-Defined Exceptions

* You do this by:

3. Referencing the declared exception name within a WHEN
clause in the exception-handling section.

EXCEPTION
WHEN e_invalid _department THEN
DBMS OUTPUT.PUT_LINE("No such department i1d.");

* These three "steps" are similar to what we did in the
previous lesson with non-predefined Oracle errors.

e The differences are, no PRAGMA EXCEPTION_ INIT is
required and you must explicitly raise the exception using
the RAISE command.

(@) =J-Nal M=l ACADEMY pisqL57L3

Trapping User-Defined Exceptions

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

10

Trapping User-Defined Exceptions

The completed code with the "steps" indicated.

DECLARE
e_invalid _department EXCEPTION; —==4:i:

v_name VARCHAR2(20):="Accounting”;
v_deptno NUMBER := 27;
BEGIN
UPDATE departments
SET department_name = v_nhame
WHERE department_id = v_deptno;

IF SQL%NOTFOUND THEN
RAISE e_invalid_department;—==:[Ez:
END IF;

EXCEPTION
WHEN e i1nvalid _department —==4:§:

THEN DBMS_ OUTPUT.PUT_LINE("No such department 1d.");
END;

(@ =7 @l =8 ACADEMY PLSQL S7L3

Trapping User-Defined Exceptions

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

The RAISE Statement

* You can use the RAISE statement to raise exceptions.

e Raising a user-defined exception:

IF v _grand_total = 0O THEN
RAISE e i1nvalid_total;
ELSE

DBMS_ OUTPUT.PUT_LINE(v_num_students / v _grand_total);
END IF;

e Raising an Oracle server error:

IF v grand _total = 0O THEN
RAISE ZERO DIVIDE;
ELSE

DBMS_ OUTPUT.PUT_LINE(v_num_students / v_grand_total);
END IF;

(@) =J-Nal M=l ACADEMY pisqL57L3

)) . Copyright © 2016, Oracle and/or its affiliates. All rights reserved.
Trapping User-Defined Exceptions

12

The RAISE_APPLICATION ERROR
Procedure

* You can use the RAISE _APPLICATION_ ERROR
procedure to return user-defined error messages from
stored subprograms.

* The following slides explain the syntax for using
RAISE_APPLICATION ERROR

 The main advantage of using this procedure instead of
RAISE, is that RAISE__APPLICATION_ ERROR allows
you to associate your own error number and meaningful
message with the exception.

A B ACADEM
OR Cl_e M PLSQL 5713 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 13

Trapping User-Defined Exceptions

The RAISE _APPLICATION ERROR
Syntax

 The error_number must fall between -20000 and
-20999.

e This range is reserved by Oracle for programmer use, and
is never used for predefined Oracle server errors.

* message is the user-specified message for the exception.

* |tis a character string up to 2,048 bytes long.

RAISE_APPLICATION_ERROR (error_number,
message[, {TRUE | FALSE}]);

OR Cl_e ACADEMY PLSQL S7L3 Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trapping User-Defined Exceptions

14

The RAISE_APPLICATION ERROR
Syntax

e TRUE | FALSE is an optional Boolean parameter.
* If TRUE, the error is placed on the stack of previous errors.

e If FALSE—the default—the error replaces all previous
errors.

RAISE_APPLICATION_ERROR (error_number,
message[, {TRUE | FALSE}]);

OR Cl_e ACADEMY PLSQL S7L3 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 15

Trapping User-Defined Exceptions

The RAISE_APPLICATION ERROR
Usage

You can use the RAISE_APPLICATION_ ERROR in two
different places:

e Executablesection = m

* Exception section
ERR{ ERROR r~rRrOR

= [0]X]

ERROR ERROR

OR CI—G ACADEMY PLSQL 5713 Copyright © 2016, Oracle and/or its affiliates. All rights reserve

Trapping User-Defined Exceptions

RAISE APPLICATION ERROR in the
Executable Section

 When called, the RAISE_APPLICATION_ ERROR
procedure displays the error number and message to the

user.
e This process is consistent with other Oracle server errors.
DECLARE
v_mgr PLS INTEGER := 123;
BEGIN

DELETE FROM employees
WHERE manager_id = v_mgr;
IF SQL%NOTFOUND THEN
RAISE_APPLICATION_ERROR(-20202,
"This 1s not a valid manager”);
END IF;
END;

OR Cl_e ACADEMY PLSQL. 573) . Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 17
Trapping User-Defined Exceptions

RAISE APPLICATION ERROR in the
Exception Section

DECLARE
v_mgr PLS INTEGER := 27;
v_employee id employees.employee 1d%TYPE;
BEGIN

SELECT employee i1d INTO v_employee id
FROM employees
WHERE manager_id = v_mgr;
DBMS _OUTPUT.PUT_LINE("Employee #" || v_employee id ||
" works for manager #" || v.mgr || "-7);
EXCEPTION
WHEN NO_DATA FOUND THEN
RAISE_APPLICATION_ERROR(-20201,
"This manager has no employees”);
WHEN TOO_MANY_ROWS THEN
RAISE_APPLICATION_ERROR(-20202,
"Too many employees were found.");
END;

(@ =7 @l =8 ACADEMY PLSQL S7L3

Trapping User-Defined Exceptions

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

18

Using the RAISE _APPLICATION ERROR
with a User-Defined Exception

DECLARE
e _name EXCEPTION;
PRAGMA EXCEPTION_INIT(e_name, -20999);
v_last_name employees. last_name%TYPE := *"Silly Name-;
BEGIN
= v_last _name;

DELETE FROM employees WHERE last_name

IF SQL%ROWCOUNT = O THEN
RAISE_APPLICATION_ERROR(-20999, "Invalid last name®);

ELSE
DBMS _OUTPUT.PUT_LINE(v_last name ||® deleted”);

END IF;
EXCEPTION

WHEN e name THEN
DBMS OUTPUT.PUT_LINE(*Valid last names are: %);

FOR cl1l IN (SELECT DISTINCT last _name FROM employees)
LOOP
DBMS_OUTPUT.PUT_LINE(cl.last_name);
END LOOP;

WHEN OTHERS THEN
DBMS OUTPUT.PUT_LINE("Error deleting from employees®);

END;

OR CI—G ACADEMY PLSQL. 573) . Copyright © 2016, Oracle and/or its affiliates. All rights reserved.
Trapping User-Defined Exceptions

Terminology

Key terms used in this lesson included:
 RAISE

« RAISE_APPLICATION_ERROR

e User-defined error

OR Cl_e ACADEMY PLSQL S7L3 Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trapping User-Defined Exceptions

20

Summary

In this lesson, you should have learned how to:

e Write PL/SQL code to name a user-defined exception

e Write PL/SQL code to raise an exception

e Write PL/SQL code to handle a raised exception

e Write PL/SQL code to use RAISE_APPLICATION_ ERROR

OR Cl_e ACADEMY PLSQL S7L3 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 21

Trapping User-Defined Exceptions

@)=y N@l = ACADEMY

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	Exception Types
	Trapping User-Defined Exceptions
	Trapping User-Defined Exceptions
	Trapping User-Defined Exceptions
	Trapping User-Defined Exceptions
	Trapping User-Defined Exceptions
	Trapping User-Defined Exceptions
	The RAISE Statement
	The RAISE_APPLICATION_ERROR Procedure
	The RAISE_APPLICATION_ERROR Syntax
	The RAISE_APPLICATION_ERROR Syntax
	The RAISE_APPLICATION_ERROR Usage
	RAISE_APPLICATION_ERROR in the Executable Section
	RAISE_APPLICATION_ERROR in the Exception Section
	Using the RAISE_APPLICATION_ERROR with a User-Defined Exception
	Terminology
	Summary
	Slide Number 22

