

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
12-2
Improving PL/SQL Performance

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Objectives

This lesson covers the following objectives:
• Identify the benefits of the NOCOPY hint and the
DETERMINISTIC clause

• Create subprograms which use the NOCOPY hint and the
DETERMINISTIC clause

• Use Bulk Binding FORALL in a DML statement

• Use BULK COLLECT in a SELECT or FETCH statement
• Use the Bulk Binding RETURNING clause

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Purpose

• Until now, you have learned how to write, compile, and
execute PL/SQL code without thinking much about how
long the execution will take.

• None of the tables you use in this course contain more
than a few hundred rows, so the execution is always fast.

• But in real organizations, tables can contain millions or
even billions of rows.

• Obviously, processing two million rows takes much longer
than processing twenty rows.

• In this lesson you will learn some ways to speed up the
processing of very large sets of data.

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Using the NOCOPY Hint

• In PL/SQL and most other programming languages, there
are two ways to pass parameter arguments between a
calling program and a called subprogram: by value and by
reference.

• Passing by value means that the argument values are
copied from the calling program’s memory to the
subprogram’s memory, and copied back again when the
subprogram is exited.

• So while the subprogram is executing, there are two
copies of each argument.

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Using the NOCOPY Hint

• Passing by reference means that the argument values are
not copied.

• The two programs share a single copy of the data.
• While passing by value is safer, it can use a lot of memory

and execute slowly if the argument value is large.
• Look at this fragment of code:

 CREATE OR REPLACE PACKAGE emp_pkg IS
 TYPE t_emp IS TABLE OF employees%ROWTYPE
 INDEX BY BINARY_INTEGER;
 PROCEDURE emp_proc
 (p_small_arg IN NUMBER, p_big_arg OUT t_emp);
...
END emp_pkg;

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Using the NOCOPY Hint

• Suppose EMP_PKG.EMP_PROC fetches one million
EMPLOYEES rows into P_BIG_ARG.

• That’s a lot of memory!
• And those one million rows must be copied to the calling

environment at the end of
the procedure’s execution.

• That’s a lot of time.

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Using the NOCOPY Hint

Maybe we should pass P_BIG_ARG by reference instead of
by value.

CREATE OR REPLACE PACKAGE emp_pkg IS
 TYPE t_emp IS TABLE OF employees%ROWTYPE
 INDEX BY BINARY_INTEGER;
 PROCEDURE emp_proc
 (p_small_arg IN NUMBER, p_big_arg OUT t_emp);
...
END emp_pkg;

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Using the NOCOPY Hint

• By default, PL/SQL IN parameter arguments are passed by
reference, while OUT and IN OUT arguments are passed
by value.

• We can change this to pass an OUT or IN OUT argument
by reference, using the NOCOPY hint.

CREATE OR REPLACE PACKAGE emp_pkg IS
 TYPE t_emp IS TABLE OF employees%ROWTYPE
 INDEX BY BINARY_INTEGER;
 PROCEDURE emp_proc
 (p_small_arg IN NUMBER, p_big_arg OUT NOCOPY t_emp);
...
END emp_pkg;

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Using the NOCOPY Hint

• Notice that NOCOPY must come immediately after the
parameter mode (OUT or IN OUT).

• Specify NOCOPY to instruct the database to pass an
argument as fast as possible.

• This clause can significantly enhance performance when
passing a large value.

CREATE OR REPLACE PACKAGE emp_pkg IS
 TYPE t_emp IS TABLE OF employees%ROWTYPE
 INDEX BY BINARY_INTEGER;
 PROCEDURE emp_proc
 (p_small_arg IN NUMBER, p_big_arg OUT NOCOPY t_emp);
...
END emp_pkg;

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Function Based Indexes

• All of the Function Based Index examples have
demonstrated the use of the UPPER and LOWER
functions.

• While these two are frequently used in Function Based
Indexes, the Oracle database is not limited to just allowing
those two functions in an index.

• Any valid Oracle built-in function can be used in a
Function-Based Index.

• Also, any database function you write yourself can be
used.

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Function Based Indexes

• There is one rule you must remember: if you are writing
your own functions to use in a Function Based Index, you
must include the key word DETERMINISTIC in the
function header.

• In mathematics, a deterministic system is a system in
which no randomness is involved in the development of
future states of the system.

• Deterministic models therefore produce the same output
for a given starting condition.

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Function Based Indexes

• In Oracle, the term deterministic declares that a function,
when given the same inputs, will always return the exact
same output.

• You must tell Oracle that the function is
DETERMINISTIC and will return a consistent result
given the same inputs.

• The built-in SQL functions UPPER, LOWER, and TO_CHAR
are already defined as deterministic by Oracle so this is
why you can create an index on the UPPER value of a
column.

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Function Based Indexes

• The results of another example of Function Based Indexes
is shown below.

• The d_events table was queried to find any events
planned for the month of May.

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Function Based Indexes

• As the Query Plan results indicate, this query executed a
Full Table Scan, which can be a very time-intensive
operation when a table has a lot of rows.

• Even though the event_date column is indexed, the index
is not used, due to the TO_CHAR expression.

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Function Based Indexes

• Once we create the following Function Based Index, we
can run the same query, but this time avoid the time-
intensive Full Table Scan.

• The index on the event_date column can now be used.

CREATE INDEX d_evnt_dt_indx
 ON d_events (TO_CHAR(event_date,'mon'))

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Function Based Indexes

Now create your own PL/SQL function and try to create a
Function Based Index on it:
CREATE OR REPLACE FUNCTION twicenum
 (p_number IN NUMBER)
 RETURN NUMBER IS
BEGIN
 RETURN p_number * 2;
END twicenum;

CREATE INDEX emp_twicesal_idx
 ON employees(twicenum(salary));

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Using the DETERMINISTIC Clause

• If you want to create a Function Based Index on your own
functions (not the built-in functions like MOD) you must
create the function using the DETERMINISTIC clause:

• Now the index can be created successfully:

CREATE OR REPLACE FUNCTION twicenum
 (p_number IN NUMBER)
 RETURN NUMBER DETERMINISTIC IS
BEGIN
 RETURN p_number * 2;
END twicenum;

CREATE INDEX emp_twicesal_idx
 ON employees(twicenum(salary));

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Using the DETERMINISTIC Clause

• Be careful!
• The word “deterministic” means that the same input

value will always produce the same output value.
• Look at this function:
CREATE OR REPLACE FUNCTION total_sal
 (p_dept_id IN employees.department_id%TYPE)
 RETURN NUMBER DETERMINISTIC IS
 v_total_sal NUMBER;
BEGIN
 SELECT SUM(salary) INTO v_total_sal
 FROM employees WHERE department_id =
p_dept_id;
 RETURN v_total_sal;
END total_sal;

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Using the DETERMINISTIC Clause

• The function on the previous slide is not really deterministic,
but the Oracle server still allowed you to create it.

• What if we give everyone a salary increase?

• Now the SUM(salary) values stored in the index are out-
of-date, and the index will not be used unless you DROP and
CREATE it again.

• This will take a long time on a very large table.
• Do NOT create a deterministic function which contains a
SELECT statement on data which may be modified in the
future.

UPDATE employees SET salary = salary * 1.10;
COMMIT;

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

What is Bulk Binding?

• Many PL/SQL blocks contain both PL/SQL statements and
SQL statements, each of which is executed by a different
part of the Oracle software called the PL/SQL Engine and
the SQL Engine.

• A change from one engine to the other is called a context
switch, and takes time.

• For one change, this is at most a few milliseconds.
• But what if there are millions of changes?

21

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

What is Bulk Binding?

• If we FETCH (in a cursor) and process millions of rows
one at a time, that’s millions of context switches.

• And that will really slow down the execution.
• FETCH is a SQL statement because it accesses database

tables, but the processing is done by PL/SQL statements.

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

What is Bulk Binding?

• Look at this code, and imagine that our EMPLOYEES table
has one million rows.

• How many context switches occur during one execution of
the procedure?

• Remember that in a cursor FOR loop, all the fetches are still

executed even though we do not explicitly code a FETCH
statement.

CREATE OR REPLACE PROCEDURE fetch_all_emps IS
 CURSOR emp_curs IS SELECT * FROM employees;
BEGIN
 FOR v_emprec IN emp_curs LOOP
 DBMS_OUTPUT.PUT_LINE(v_emprec.first_name);
 END LOOP;
END fetch_all_emps;

23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

What is Bulk Binding?

• It would be much quicker to fetch all the rows in just one
context switch within the SQL Engine.

• This is what Bulk Binding does.
• Of course, if all the rows are fetched in one statement, we

will need an INDEX BY table of records to store all the
fetched rows.

24

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

What is Bulk Binding?

• If each row is (on average) 100 bytes in size, storing one
million rows will need 100 megabytes of memory.

• When you think about many users accessing a database,
you can see how memory usage could become an issue.

• So Bulk Binding is a trade-off: more memory required
(possibly bad) but faster execution (good).

25

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Bulk Binding a SELECT: Using BULK COLLECT

• Here is the one million row table from the earlier slide,
this time using Bulk Binding to fetch all the rows in a single
call to the SQL Engine.

• Now how many context switches are there?

CREATE OR REPLACE PROCEDURE fetch_all_emps IS
 TYPE t_emp IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER;
 v_emptab t_emp;
BEGIN
 SELECT * BULK COLLECT INTO v_emptab FROM employees;
 FOR i IN v_emptab.FIRST..v_emptab.LAST LOOP
 IF v_emptab.EXISTS(i) THEN
 DBMS_OUTPUT.PUT_LINE(v_emptab(i).last_name);
 END IF;
 END LOOP;
END fetch_all_emps;

26

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Bulk Binding a SELECT: Using BULK COLLECT

• When using BULK COLLECT, we do not declare a cursor
because we do not fetch individual rows one at a time.

• Instead, we SELECT the whole database table into the
PL/SQL INDEX BY table in a single SQL statement.

• Here is another example:
CREATE OR REPLACE PROCEDURE fetch_some_emps IS
 TYPE t_salary IS TABLE OF employees.salary%TYPE
 INDEX BY BINARY_INTEGER;
 v_saltab t_salary;
BEGIN
 SELECT salary BULK COLLECT INTO v_saltab
 FROM employees WHERE department_id = 20 ORDER BY salary;
 FOR i IN v_saltab.FIRST..v_saltab.LAST LOOP
 IF v_saltab.EXISTS(i) THEN
 DBMS_OUTPUT.PUT_LINE(v_saltab(i));
 END IF;
 END LOOP;
END fetch_some_emps;

27

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Bulk Binding with DML: Using FORALL

• We may also want to speed up DML statements which
process many rows.

• Look at this code:

• Again, if we are inserting one million rows, this is one

million executions of an INSERT SQL statement.
• How many context switches?

CREATE OR REPLACE PROCEDURE insert_emps IS
 TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER;
 v_emptab t_emps;
BEGIN
 FOR i IN v_emptab.FIRST..v_emptab.LAST LOOP
 INSERT INTO employees VALUES v_emptab(i);
 END LOOP;
END insert_emps;

28

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Bulk Binding with DML: Using FORALL

• Just like BULK COLLECT, there is no LOOP...END LOOP
code because all the rows are inserted with a single call to
the SQL Engine.

• The example on the slide will compile, but will not perform
any inserts as the v_emptab table is not populated in this
code example.

CREATE OR REPLACE PROCEDURE insert_emps IS
 TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER;
 v_emptab t_emps;
BEGIN
 FORALL i IN v_emptab.FIRST..v_emptab.LAST
 INSERT INTO employees VALUES v_emptab(i);
END insert_emps;

29

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Bulk Binding with DML: Using FORALL

• We can combine BULK COLLECT and FORALL.

• Suppose we want to copy millions of rows from one table
to another:

CREATE OR REPLACE PROCEDURE copy_emps IS
 TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER;
 v_emptab t_emps;
BEGIN
 SELECT * BULK COLLECT INTO v_emptab FROM employees;
 FORALL i IN v_emptab.FIRST..v_emptab.LAST
 INSERT INTO new_employees VALUES v_emptab(i);
END copy_emps;

30

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Bulk Binding with DML: Using FORALL

We can use FORALL with UPDATE and DELETE
statements as well as with INSERT:

CREATE OR REPLACE PROCEDURE update_emps IS
 TYPE t_emp_id IS TABLE OF employees.employee_id%TYPE
 INDEX BY BINARY_INTEGER;
 v_emp_id_tab t_emp_id;
BEGIN
 SELECT employee_id BULK COLLECT INTO v_emp_id_tab FROM employees;
 FORALL i IN v_emp_id_tab.FIRST..v_emp_id_tab.LAST
 UPDATE new_employees
 SET salary = salary * 1.05
 WHERE employee_id = v_emp_id_tab(i);
END update_emps;

31

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Bulk Binding Cursor Attributes:
SQL%BULK_ROWCOUNT

In addition to implicit cursor attributes such as
SQL%ROWCOUNT, Bulk Binding uses two extra cursor
attributes, which are both INDEX BY tables.
CREATE OR REPLACE PROCEDURE insert_emps IS
 TYPE t_emps IS TABLE OF employees%ROWTYPE
 INDEX BY BINARY_INTEGER;
 v_emptab t_emps;
BEGIN
 SELECT * BULK COLLECT INTO v_emptab FROM employees;
 FORALL i IN v_emptab.FIRST..v_emptab.LAST
 INSERT INTO emp VALUES v_emptab(i);
 FOR i IN v_emptab.FIRST..v_emptab.LAST LOOP
 DBMS_OUTPUT.PUT_LINE('Inserted: '
 || i || ' '||SQL%BULK_ROWCOUNT(i)|| 'rows');
 END LOOP;
END insert_emps;

32

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Bulk Binding Cursor Attributes:
SQL%BULK_ROWCOUNT

SQL%BULK_ROWCOUNT(i) shows the number of rows
processed by the ith execution of a DML statement when
using FORALL:
CREATE OR REPLACE PROCEDURE insert_emps IS
 TYPE t_emps IS TABLE OF employees%ROWTYPE
 INDEX BY BINARY_INTEGER;
 v_emptab t_emps;
BEGIN
 SELECT * BULK COLLECT INTO v_emptab FROM employees;
 FORALL i IN v_emptab.FIRST..v_emptab.LAST
 INSERT INTO emp VALUES v_emptab(i);
 FOR i IN v_emptab.FIRST..v_emptab.LAST LOOP
 DBMS_OUTPUT.PUT_LINE('Inserted: '
 || i || ' '||SQL%BULK_ROWCOUNT(i)|| 'rows');
 END LOOP;
END insert_emps;

33

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Bulk Binding Cursor Attributes:
SQL%BULK_EXCEPTIONS

• Look again at our first example of using FORALL:

• What if one of the INSERTs fails, perhaps because a
constraint was violated?

CREATE OR REPLACE PROCEDURE insert_emps IS
 TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER;
 v_emptab t_emps;
BEGIN
 SELECT * BULK COLLECT INTO v_emptab FROM employees;
 FORALL i IN v_emptab.FIRST..v_emptab.LAST
 INSERT INTO employees VALUES v_emptab(i);
END insert_emps;

34

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Bulk Binding Cursor Attributes:
SQL%BULK_EXCEPTIONS

• The whole FORALL statement fails, so no rows are
inserted. And you don’t even know which row failed to
insert!

• That has wasted a lot of time.
CREATE OR REPLACE PROCEDURE insert_emps IS
 TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER;
 v_emptab t_emps;
BEGIN
 SELECT * BULK COLLECT INTO v_emptab FROM employees;
 FORALL i IN v_emptab.FIRST..v_emptab.LAST
 INSERT INTO employees VALUES v_emptab(i);
END insert_emps;

35

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Bulk Binding Cursor Attributes:
SQL%BULK_EXCEPTIONS

We add SAVE EXCEPTIONS to our FORALL statement:
CREATE OR REPLACE PROCEDURE insert_emps IS
 TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER;
 v_emptab t_emps;
BEGIN
 SELECT * BULK COLLECT INTO v_emptab FROM employees;
 FORALL i IN v_emptab.FIRST..v_emptab.LAST SAVE EXCEPTIONS
 INSERT INTO employees VALUES v_emptab(i);
END insert_emps;

36

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Bulk Binding Cursor Attributes:
SQL%BULK_EXCEPTIONS

• Now, all the non-violating rows will be inserted.
• The violating rows populate an INDEX BY table called
SQL%BULK_EXCEPTIONS which has two fields:
ERROR_INDEX shows which inserts failed (first, second, …)
and ERROR_CODE shows the Oracle Server predefined
error code.

CREATE OR REPLACE PROCEDURE insert_emps IS
 TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER;
 v_emptab t_emps;
BEGIN
 SELECT * BULK COLLECT INTO v_emptab FROM employees;
 FORALL i IN v_emptab.FIRST..v_emptab.LAST SAVE EXCEPTIONS
 INSERT INTO employees VALUES v_emptab(i);
END insert_emps;

37

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Bulk Binding Cursor Attributes:
SQL%BULK_EXCEPTIONS

An exception has been raised (at least one row failed to insert)
so we must code the display of SQL%BULK_EXCEPTIONS in
the EXCEPTION section.
CREATE OR REPLACE PROCEDURE insert_emps IS
 TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER;
 v_emptab t_emps;
BEGIN
 SELECT * BULK COLLECT INTO v_emptab FROM employees;
 FORALL i IN v_emptab.FIRST..v_emptab.LAST SAVE EXCEPTIONS
 INSERT INTO employees VALUES v_emptab(i);
EXCEPTION
WHEN OTHERS THEN
 FOR j in 1..SQL%BULK_EXCEPTIONS.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(SQL%BULK_EXCEPTIONS(j).ERROR_INDEX);
 DBMS_OUTPUT.PUT_LINE(SQL%BULK_EXCEPTIONS(j).ERROR_CODE);
 END LOOP;
END insert_emps;

38

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Using the RETURNING Clause

• Sometimes we need to DML a row, then SELECT column
values from the updated row for later use:

• Two SQL statements are required: an UPDATE and a
SELECT.

CREATE OR REPLACE PROCEDURE update_one_emp
 (p_emp_id IN employees.employee_id%TYPE,
 p_salary_raise_percent IN NUMBER) IS
 v_new_salary employees.salary%TYPE;
BEGIN
 UPDATE employees
 SET salary = salary * (1 + p_salary_raise_percent)
 WHERE employee_id = p_emp_id;
 SELECT salary INTO v_new_salary
 FROM employees
 WHERE employee_id = p_emp_id;
 DBMS_OUTPUT.PUT_LINE('New salary is: ' || v_new_salary);
END update_one_emp;

39

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Using the RETURNING Clause

• However, we can do the SELECT within the UPDATE
statement:

• This is faster because it makes only one call to the SQL

Engine.

CREATE OR REPLACE PROCEDURE update_one_emp
 (p_emp_id IN employees.employee_id%TYPE,
 p_salary_raise_percent IN NUMBER) IS
 v_new_salary employees.salary%TYPE;
BEGIN
 UPDATE employees
 SET salary = salary * (1 + p_salary_raise_percent)
 WHERE employee_id = p_emp_id
 RETURNING salary INTO v_new_salary;
 DBMS_OUTPUT.PUT_LINE('New salary is: ' || v_new_salary);
END update_one_emp;

40

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Using the RETURNING Clause with FORALL

What if we want to update millions of rows and see the
updated values?
CREATE OR REPLACE PROCEDURE update_all_emps
 (p_salary_raise_percent IN NUMBER) IS
 TYPE t_empid IS TABLE OF employees.employee_id%TYPE
 INDEX BY BINARY_INTEGER;
 TYPE t_sal IS TABLE OF employees.salary%TYPE
 INDEX BY BINARY_INTEGER;
 v_empidtab t_empid;
 v_saltab t_sal;
BEGIN
 SELECT employee_id BULK COLLECT INTO v_empidtab FROM employees;
 FORALL i IN v_empidtab.FIRST..v_empidtab.LAST
 UPDATE employees
 SET salary = salary * (1 + p_salary_raise_percent)
 WHERE employee_id = v_empidtab(i);
 SELECT salary BULK COLLECT INTO v_saltab FROM employees;
END update_all_emps;

41

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Using the RETURNING Clause with FORALL

We can use RETURNING with a Bulk Binding FORALL
clause:
CREATE OR REPLACE PROCEDURE update_all_emps
 (p_salary_raise_percent IN NUMBER) IS
 TYPE t_empid IS TABLE OF employees.employee_id%TYPE
 INDEX BY BINARY_INTEGER;
 TYPE t_sal IS TABLE OF employees.salary%TYPE
 INDEX BY BINARY_INTEGER;
 v_empidtab t_empid;
 v_saltab t_sal;
BEGIN
 SELECT employee_id BULK COLLECT INTO v_empidtab FROM employees;
 FORALL i IN v_empidtab.FIRST..v_empidtab.LAST
 UPDATE employees
 SET salary = salary * (1 + p_salary_raise_percent)
 WHERE employee_id = v_empidtab(i)
 RETURNING salary BULK COLLECT INTO v_saltab;
END update_all_emps;

42

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Terminology

Key terms used in this lesson included:
• Bulk Binding
• BULK COLLECT Clause
• DETERMINISTIC Clause
• FORALL
• NOCOPY hint
• RETURNING Clause

43

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L2
Improving PL/SQL Performance

Summary

In this lesson, you should have learned how to:
• Identify the benefits of the NOCOPY hint and the
DETERMINISTIC clause

• Create subprograms which use the NOCOPY hint and the
DETERMINISTIC clause

• Use Bulk Binding FORALL in a DML statement
• Use BULK COLLECT in a SELECT or FETCH statement
• Use the Bulk Binding RETURNING clause

44

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	Using the NOCOPY Hint
	Using the NOCOPY Hint
	Using the NOCOPY Hint
	Using the NOCOPY Hint
	Using the NOCOPY Hint
	Using the NOCOPY Hint
	Function Based Indexes
	Function Based Indexes
	Function Based Indexes
	Function Based Indexes
	Function Based Indexes
	Function Based Indexes
	Function Based Indexes
	Using the DETERMINISTIC Clause
	Using the DETERMINISTIC Clause
	Using the DETERMINISTIC Clause
	What is Bulk Binding?
	What is Bulk Binding?
	What is Bulk Binding?
	What is Bulk Binding?
	What is Bulk Binding?
	Bulk Binding a SELECT: Using BULK COLLECT
	Bulk Binding a SELECT: Using BULK COLLECT
	Bulk Binding with DML: Using FORALL
	Bulk Binding with DML: Using FORALL
	Bulk Binding with DML: Using FORALL
	Bulk Binding with DML: Using FORALL
	Bulk Binding Cursor Attributes: SQL%BULK_ROWCOUNT
	Bulk Binding Cursor Attributes: SQL%BULK_ROWCOUNT
	Bulk Binding Cursor Attributes: SQL%BULK_EXCEPTIONS
	Bulk Binding Cursor Attributes: SQL%BULK_EXCEPTIONS
	Bulk Binding Cursor Attributes: SQL%BULK_EXCEPTIONS
	Bulk Binding Cursor Attributes: SQL%BULK_EXCEPTIONS
	Bulk Binding Cursor Attributes: SQL%BULK_EXCEPTIONS
	Using the RETURNING Clause
	Using the RETURNING Clause
	Using the RETURNING Clause with FORALL
	Using the RETURNING Clause with FORALL
	Terminology
	Summary
	Slide Number 45

