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Objectives 

This lesson covers the following objectives: 
• Identify the benefits of the NOCOPY hint and the 
DETERMINISTIC clause 

• Create subprograms which use the NOCOPY hint and the 
DETERMINISTIC clause 

• Use Bulk Binding FORALL in a DML statement 

• Use BULK COLLECT in a SELECT or FETCH statement 
• Use the Bulk Binding RETURNING clause 
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Purpose  

• Until now, you have learned how to write, compile, and 
execute PL/SQL code without thinking much about how 
long the execution will take. 

• None of the tables you use in this course contain more 
than a few hundred rows, so the execution is always fast.   

• But in real organizations, tables can contain millions or 
even billions of rows.  

• Obviously, processing two million rows takes much longer 
than processing twenty rows. 

• In this lesson you will learn some ways to speed up the 
processing of very large sets of data. 
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Using the NOCOPY Hint 

• In PL/SQL and most other programming languages, there 
are two ways to pass parameter arguments between a 
calling program and a called subprogram: by value and by 
reference. 

• Passing by value means that the argument values are 
copied from the calling program’s memory to the 
subprogram’s memory, and copied back again when the 
subprogram is exited.  

• So while the subprogram is executing, there are two 
copies of each argument. 
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Using the NOCOPY Hint 

• Passing by reference means that the argument values are 
not copied.  

• The two programs share a single copy of the data.  
• While passing by value is safer, it can use a lot of memory 

and execute slowly if the argument value is large.  
• Look at this fragment of code: 

 CREATE OR REPLACE PACKAGE emp_pkg IS 
  TYPE t_emp IS TABLE OF employees%ROWTYPE 
                INDEX BY BINARY_INTEGER; 
  PROCEDURE emp_proc 
    (p_small_arg IN NUMBER, p_big_arg OUT t_emp); 
... 
END emp_pkg; 
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Using the NOCOPY Hint 

• Suppose EMP_PKG.EMP_PROC fetches one million 
EMPLOYEES rows into P_BIG_ARG.  

• That’s a lot of memory!  
• And those one million rows must be copied to the calling 

environment at the end of                                                                
the procedure’s execution.  

• That’s a lot of time.  
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Using the NOCOPY Hint 

Maybe we should pass P_BIG_ARG by reference instead of 
by value. 

 
 

CREATE OR REPLACE PACKAGE emp_pkg IS 
  TYPE t_emp IS TABLE OF employees%ROWTYPE 
                INDEX BY BINARY_INTEGER; 
  PROCEDURE emp_proc 
    (p_small_arg IN NUMBER, p_big_arg OUT t_emp); 
... 
END emp_pkg; 
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Using the NOCOPY Hint 

• By default, PL/SQL IN parameter arguments are passed by 
reference, while OUT and IN OUT arguments are passed 
by value.  

• We can change this to pass an OUT or IN OUT argument 
by reference, using the NOCOPY hint. 

 
 
 

 

CREATE OR REPLACE PACKAGE emp_pkg IS 
  TYPE t_emp IS TABLE OF employees%ROWTYPE 
                INDEX BY BINARY_INTEGER; 
  PROCEDURE emp_proc 
    (p_small_arg IN NUMBER, p_big_arg OUT NOCOPY t_emp); 
... 
END emp_pkg; 
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Using the NOCOPY Hint 

• Notice that NOCOPY must come immediately after the 
parameter mode (OUT or IN OUT). 

• Specify NOCOPY to instruct the database to pass an 
argument as fast as possible.  

• This clause can significantly enhance performance when 
passing a large value.   
 

 

 

CREATE OR REPLACE PACKAGE emp_pkg IS 
  TYPE t_emp IS TABLE OF employees%ROWTYPE 
                INDEX BY BINARY_INTEGER; 
  PROCEDURE emp_proc 
    (p_small_arg IN NUMBER, p_big_arg OUT NOCOPY t_emp); 
... 
END emp_pkg; 
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Function Based Indexes  

• All of the Function Based Index examples have 
demonstrated the use of the UPPER and LOWER 
functions.  

• While these two are frequently used in Function Based 
Indexes, the Oracle database is not limited to just allowing 
those two functions in an index.   

• Any valid Oracle built-in function can be used in a 
Function-Based Index.  

• Also, any database function you write yourself can be 
used.  
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Function Based Indexes 

• There is one rule you must remember: if you are writing 
your own functions to use in a Function Based Index, you 
must include the key word DETERMINISTIC in the 
function header. 

• In mathematics, a deterministic system is a system in 
which no randomness is involved in the development of 
future states of the system.  

• Deterministic models therefore produce the same output 
for a given starting condition. 
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Function Based Indexes 

• In Oracle, the term deterministic declares that a function, 
when given the same inputs, will always return the exact 
same output.  

• You must tell Oracle that the function is 
DETERMINISTIC and will return a consistent result 
given the same inputs. 

• The built-in SQL functions UPPER, LOWER, and TO_CHAR 
are already defined as deterministic by Oracle so this is 
why you can create an index on the UPPER value of a 
column. 

13 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S12L2 
Improving PL/SQL Performance 

Function Based Indexes 

• The results of another example of Function Based Indexes 
is shown below.  

• The d_events table was queried to find any events 
planned for the month of May. 
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Function Based Indexes 

• As the Query Plan results indicate, this query executed a 
Full Table Scan, which can be a very time-intensive 
operation when a table has a lot of rows.  

• Even though the event_date column is indexed, the index 
is not used, due to the TO_CHAR expression. 
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Function Based Indexes 

• Once we create the following Function Based Index, we 
can run the same query, but this time avoid the time-
intensive Full Table Scan. 

• The index on the event_date column can now be used. 

 

 
 
 

 

 

CREATE INDEX d_evnt_dt_indx  
  ON d_events (TO_CHAR(event_date,'mon')) 
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Function Based Indexes 

Now create your own PL/SQL function and try to create a 
Function Based Index on it: 
CREATE OR REPLACE FUNCTION twicenum 
  (p_number IN NUMBER) 
  RETURN NUMBER IS 
BEGIN 
  RETURN p_number * 2; 
END twicenum; 
   

CREATE INDEX emp_twicesal_idx 
  ON employees(twicenum(salary));       
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Using the DETERMINISTIC Clause 

• If you want to create a Function Based Index on your own 
functions (not the built-in functions like MOD) you must 
create the function using the DETERMINISTIC clause: 

 

 

 
• Now the index can be created successfully: 

CREATE OR REPLACE FUNCTION twicenum 
  (p_number IN NUMBER) 
  RETURN NUMBER DETERMINISTIC IS 
BEGIN 
  RETURN p_number * 2; 
END twicenum; 

CREATE INDEX emp_twicesal_idx 
  ON employees(twicenum(salary));       
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Using the DETERMINISTIC Clause 

• Be careful!  
• The word “deterministic” means that the same input 

value will always produce the same output value.  
• Look at this function: 
CREATE OR REPLACE FUNCTION total_sal 
  (p_dept_id IN employees.department_id%TYPE) 
  RETURN NUMBER DETERMINISTIC IS 
  v_total_sal  NUMBER; 
BEGIN 
  SELECT SUM(salary) INTO v_total_sal 
    FROM employees WHERE department_id = 
p_dept_id; 
  RETURN v_total_sal; 
END total_sal; 
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Using the DETERMINISTIC Clause 

• The function on the previous slide is not really deterministic, 
but the Oracle server still allowed you to create it.  

• What if we give everyone a salary increase? 
 

 

• Now the SUM(salary) values stored in the index are out-
of-date, and the index will not be used unless you DROP and 
CREATE it again.  

• This will take a long time on a very large table.  
• Do NOT create a deterministic function which contains a 
SELECT statement on data which may be modified in the 
future. 

UPDATE employees SET salary = salary * 1.10; 
COMMIT;       
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What is Bulk Binding? 

• Many PL/SQL blocks contain both PL/SQL statements and 
SQL statements, each of which is executed by a different 
part of the Oracle software called the PL/SQL Engine and 
the SQL Engine. 

• A change from one engine to the other is called a context 
switch, and takes time.  

• For one change, this is at most a few milliseconds.  
• But what if there are millions of changes?   

 

21 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S12L2 
Improving PL/SQL Performance 

What is Bulk Binding?  

• If we FETCH (in a cursor) and process millions of rows 
one at a time, that’s millions of context switches.  

• And that will really slow down the execution.  
• FETCH is a SQL statement because it accesses database 

tables, but the processing is done by PL/SQL statements. 
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What is Bulk Binding?  

• Look at this code, and imagine that our EMPLOYEES table 
has one million rows.  

• How many context switches occur during one execution of 
the procedure? 

 

 

 
• Remember that in a cursor FOR loop, all the fetches are still 

executed even though we do not explicitly code a FETCH 
statement. 

CREATE OR REPLACE PROCEDURE fetch_all_emps IS 
  CURSOR emp_curs IS SELECT * FROM employees; 
BEGIN 
  FOR v_emprec IN emp_curs LOOP 
    DBMS_OUTPUT.PUT_LINE(v_emprec.first_name); 
  END LOOP; 
END fetch_all_emps; 
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What is Bulk Binding?  

• It would be much quicker to fetch all the rows in just one 
context switch within the SQL Engine.  

• This is what Bulk Binding does. 
• Of course, if all the rows are fetched in one statement, we 

will need an INDEX BY table of records to store all the 
fetched rows. 
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What is Bulk Binding?  

• If each row is (on average) 100 bytes in size, storing one 
million rows will need 100 megabytes of memory.    

• When you think about many users accessing a database, 
you can see how memory usage could become an issue. 

• So Bulk Binding is a trade-off: more memory required 
(possibly bad) but faster execution (good). 
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Bulk Binding a SELECT: Using BULK COLLECT 

• Here is the one million row table from the earlier slide, 
this time using Bulk Binding to fetch all the rows in a single 
call to the SQL Engine. 

 

 

 
 

 
• Now how many context switches are there? 

CREATE OR REPLACE PROCEDURE fetch_all_emps IS 
  TYPE t_emp IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER; 
  v_emptab       t_emp; 
BEGIN 
  SELECT * BULK COLLECT INTO v_emptab FROM employees; 
  FOR i IN v_emptab.FIRST..v_emptab.LAST LOOP 
    IF v_emptab.EXISTS(i) THEN 
      DBMS_OUTPUT.PUT_LINE(v_emptab(i).last_name); 
    END IF; 
  END LOOP; 
END fetch_all_emps; 
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Bulk Binding a SELECT: Using BULK COLLECT 

• When using BULK COLLECT, we do not declare a cursor 
because we do not fetch individual rows one at a time.  

• Instead, we SELECT the whole database table into the 
PL/SQL INDEX BY table in a single SQL statement.  

• Here is another example: 
CREATE OR REPLACE PROCEDURE fetch_some_emps IS 
  TYPE t_salary IS TABLE OF employees.salary%TYPE 
                   INDEX BY BINARY_INTEGER; 
  v_saltab       t_salary; 
BEGIN 
  SELECT salary BULK COLLECT INTO v_saltab 
    FROM employees WHERE department_id = 20 ORDER BY salary; 
  FOR i IN v_saltab.FIRST..v_saltab.LAST LOOP 
    IF v_saltab.EXISTS(i) THEN 
      DBMS_OUTPUT.PUT_LINE(v_saltab(i)); 
    END IF; 
  END LOOP; 
END fetch_some_emps; 
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Bulk Binding with DML: Using FORALL 

• We may also want to speed up DML statements which 
process many rows.  

• Look at this code: 
 

 

 
 

 
• Again, if we are inserting one million rows, this is one 

million executions of an INSERT SQL statement.  
• How many context switches? 

CREATE OR REPLACE PROCEDURE insert_emps IS 
  TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER; 
  v_emptab       t_emps; 
BEGIN 
  FOR i IN v_emptab.FIRST..v_emptab.LAST LOOP 
    INSERT INTO employees VALUES v_emptab(i); 
 END LOOP; 
END insert_emps; 
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Bulk Binding with DML: Using FORALL  

• Just like BULK COLLECT, there is no LOOP...END LOOP 
code because all the rows are inserted with a single call to 
the SQL Engine.  

• The example on the slide will compile, but will not perform 
any inserts as the v_emptab table is not populated in this 
code example. 

CREATE OR REPLACE PROCEDURE insert_emps IS 
  TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER; 
  v_emptab       t_emps; 
BEGIN 
  FORALL i IN v_emptab.FIRST..v_emptab.LAST   
    INSERT INTO employees VALUES v_emptab(i); 
END insert_emps; 
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Bulk Binding with DML: Using FORALL  

• We can combine BULK COLLECT and FORALL.   

• Suppose we want to copy millions of rows from one table 
to another: 

CREATE OR REPLACE PROCEDURE copy_emps IS 
  TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER; 
  v_emptab       t_emps; 
BEGIN 
  SELECT * BULK COLLECT INTO v_emptab FROM employees; 
  FORALL i IN v_emptab.FIRST..v_emptab.LAST 
    INSERT INTO new_employees VALUES v_emptab(i); 
END copy_emps; 
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Bulk Binding with DML: Using FORALL  

We can use FORALL with UPDATE and DELETE 
statements as well as with INSERT: 

CREATE OR REPLACE PROCEDURE update_emps IS 
  TYPE t_emp_id IS TABLE OF employees.employee_id%TYPE 
                   INDEX BY BINARY_INTEGER; 
  v_emp_id_tab     t_emp_id; 
BEGIN 
  SELECT employee_id BULK COLLECT INTO v_emp_id_tab FROM employees; 
  FORALL i IN v_emp_id_tab.FIRST..v_emp_id_tab.LAST 
    UPDATE new_employees  
      SET salary = salary * 1.05 
      WHERE employee_id = v_emp_id_tab(i); 
END update_emps; 
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Bulk Binding Cursor Attributes: 
SQL%BULK_ROWCOUNT 

In addition to implicit cursor attributes such as 
SQL%ROWCOUNT, Bulk Binding uses two extra cursor 
attributes, which are both INDEX BY tables.  
CREATE OR REPLACE PROCEDURE insert_emps IS 
  TYPE t_emps IS TABLE OF employees%ROWTYPE  
  INDEX BY BINARY_INTEGER; 
  v_emptab       t_emps; 
BEGIN 
  SELECT * BULK COLLECT INTO v_emptab FROM employees; 
  FORALL i IN v_emptab.FIRST..v_emptab.LAST 
    INSERT INTO emp VALUES v_emptab(i); 
  FOR i IN v_emptab.FIRST..v_emptab.LAST LOOP 
    DBMS_OUTPUT.PUT_LINE('Inserted: '  
        || i || ' '||SQL%BULK_ROWCOUNT(i)|| 'rows'); 
  END LOOP; 
END insert_emps; 
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Bulk Binding Cursor Attributes: 
SQL%BULK_ROWCOUNT 

SQL%BULK_ROWCOUNT(i) shows the number of rows 
processed by the ith execution of a DML statement when 
using FORALL: 
CREATE OR REPLACE PROCEDURE insert_emps IS 
  TYPE t_emps IS TABLE OF employees%ROWTYPE  
  INDEX BY BINARY_INTEGER; 
  v_emptab       t_emps; 
BEGIN 
  SELECT * BULK COLLECT INTO v_emptab FROM employees; 
  FORALL i IN v_emptab.FIRST..v_emptab.LAST 
    INSERT INTO emp VALUES v_emptab(i); 
  FOR i IN v_emptab.FIRST..v_emptab.LAST LOOP 
    DBMS_OUTPUT.PUT_LINE('Inserted: '  
        || i || ' '||SQL%BULK_ROWCOUNT(i)|| 'rows'); 
  END LOOP; 
END insert_emps; 
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Bulk Binding Cursor Attributes: 
SQL%BULK_EXCEPTIONS 

• Look again at our first example of using FORALL: 

 

 

 
 

• What if one of the INSERTs fails, perhaps because a 
constraint was violated?  

CREATE OR REPLACE PROCEDURE insert_emps IS 
  TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER; 
  v_emptab       t_emps; 
BEGIN 
  SELECT * BULK COLLECT INTO v_emptab FROM employees; 
  FORALL i IN v_emptab.FIRST..v_emptab.LAST 
    INSERT INTO employees VALUES v_emptab(i); 
END insert_emps; 
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Bulk Binding Cursor Attributes: 
SQL%BULK_EXCEPTIONS 

• The whole FORALL statement fails, so no rows are 
inserted. And you don’t even know which row failed to 
insert!  

• That has wasted a lot of time. 
CREATE OR REPLACE PROCEDURE insert_emps IS 
  TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER; 
  v_emptab       t_emps; 
BEGIN 
  SELECT * BULK COLLECT INTO v_emptab FROM employees; 
  FORALL i IN v_emptab.FIRST..v_emptab.LAST 
    INSERT INTO employees VALUES v_emptab(i); 
END insert_emps; 
      

35 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S12L2 
Improving PL/SQL Performance 

Bulk Binding Cursor Attributes: 
SQL%BULK_EXCEPTIONS 

We add SAVE EXCEPTIONS to our FORALL statement: 
CREATE OR REPLACE PROCEDURE insert_emps IS 
  TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER; 
  v_emptab       t_emps; 
BEGIN 
  SELECT * BULK COLLECT INTO v_emptab FROM employees; 
  FORALL i IN v_emptab.FIRST..v_emptab.LAST SAVE EXCEPTIONS 
    INSERT INTO employees VALUES v_emptab(i); 
END insert_emps; 
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Bulk Binding Cursor Attributes: 
SQL%BULK_EXCEPTIONS 

• Now, all the non-violating rows will be inserted.  
• The violating rows populate an INDEX BY table called 
SQL%BULK_EXCEPTIONS which has two fields:  
ERROR_INDEX shows which inserts failed (first, second, …) 
and ERROR_CODE shows the Oracle Server predefined 
error code.   

CREATE OR REPLACE PROCEDURE insert_emps IS 
  TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER; 
  v_emptab       t_emps; 
BEGIN 
  SELECT * BULK COLLECT INTO v_emptab FROM employees; 
  FORALL i IN v_emptab.FIRST..v_emptab.LAST SAVE EXCEPTIONS 
    INSERT INTO employees VALUES v_emptab(i); 
END insert_emps; 
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Bulk Binding Cursor Attributes: 
SQL%BULK_EXCEPTIONS 

An exception has been raised (at least one row failed to insert) 
so we must code the display of SQL%BULK_EXCEPTIONS in 
the EXCEPTION section. 
CREATE OR REPLACE PROCEDURE insert_emps IS 
  TYPE t_emps IS TABLE OF employees%ROWTYPE INDEX BY BINARY_INTEGER; 
  v_emptab       t_emps; 
BEGIN 
  SELECT * BULK COLLECT INTO v_emptab FROM employees; 
  FORALL i IN v_emptab.FIRST..v_emptab.LAST SAVE EXCEPTIONS 
    INSERT INTO employees VALUES v_emptab(i); 
EXCEPTION 
WHEN OTHERS THEN 
  FOR j in 1..SQL%BULK_EXCEPTIONS.COUNT LOOP 
    DBMS_OUTPUT.PUT_LINE(SQL%BULK_EXCEPTIONS(j).ERROR_INDEX); 
    DBMS_OUTPUT.PUT_LINE(SQL%BULK_EXCEPTIONS(j).ERROR_CODE); 
  END LOOP; 
END insert_emps; 
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Using the RETURNING Clause 

• Sometimes we need to DML a row, then SELECT column 
values from the updated row for later use: 

 
 

 

 

 
• Two SQL statements are required: an UPDATE and a 
SELECT. 

 

 

CREATE OR REPLACE PROCEDURE update_one_emp 
  (p_emp_id               IN  employees.employee_id%TYPE, 
   p_salary_raise_percent IN  NUMBER) IS 
   v_new_salary           employees.salary%TYPE; 
BEGIN 
  UPDATE employees 
    SET salary = salary * (1 + p_salary_raise_percent) 
    WHERE employee_id = p_emp_id; 
  SELECT salary INTO v_new_salary 
    FROM employees 
    WHERE employee_id = p_emp_id; 
  DBMS_OUTPUT.PUT_LINE('New salary is: ' || v_new_salary); 
END update_one_emp; 
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Using the RETURNING Clause 

• However, we can do the SELECT within the UPDATE 
statement: 

 
 

 

 

 
• This is faster because it makes only one call to the SQL 

Engine. 

CREATE OR REPLACE PROCEDURE update_one_emp 
  (p_emp_id               IN  employees.employee_id%TYPE, 
   p_salary_raise_percent IN  NUMBER) IS 
   v_new_salary           employees.salary%TYPE; 
BEGIN 
  UPDATE employees 
    SET salary = salary * (1 + p_salary_raise_percent) 
    WHERE employee_id = p_emp_id 
    RETURNING salary INTO v_new_salary; 
  DBMS_OUTPUT.PUT_LINE('New salary is: ' || v_new_salary); 
END update_one_emp; 
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Using the RETURNING Clause with FORALL 

What if we want to update millions of rows and see the 
updated values? 
CREATE OR REPLACE PROCEDURE update_all_emps 
  (p_salary_raise_percent IN  NUMBER) IS 
  TYPE t_empid IS TABLE OF employees.employee_id%TYPE 
                  INDEX BY BINARY_INTEGER; 
  TYPE t_sal IS   TABLE OF employees.salary%TYPE 
                  INDEX BY BINARY_INTEGER; 
  v_empidtab      t_empid; 
  v_saltab        t_sal; 
BEGIN 
  SELECT employee_id BULK COLLECT INTO v_empidtab FROM employees; 
  FORALL i IN v_empidtab.FIRST..v_empidtab.LAST 
    UPDATE employees 
      SET salary = salary * (1 + p_salary_raise_percent) 
      WHERE employee_id = v_empidtab(i); 
  SELECT salary BULK COLLECT INTO v_saltab FROM employees; 
END update_all_emps; 
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Using the RETURNING Clause with FORALL 

We can use RETURNING with a Bulk Binding FORALL 
clause: 
CREATE OR REPLACE PROCEDURE update_all_emps 
  (p_salary_raise_percent IN  NUMBER) IS 
  TYPE t_empid IS TABLE OF employees.employee_id%TYPE 
                  INDEX BY BINARY_INTEGER; 
  TYPE t_sal IS   TABLE OF employees.salary%TYPE 
                  INDEX BY BINARY_INTEGER; 
  v_empidtab      t_empid; 
  v_saltab        t_sal; 
BEGIN 
  SELECT employee_id BULK COLLECT INTO v_empidtab FROM employees; 
  FORALL i IN v_empidtab.FIRST..v_empidtab.LAST 
    UPDATE employees 
      SET salary = salary * (1 + p_salary_raise_percent) 
      WHERE employee_id = v_empidtab(i) 
      RETURNING salary BULK COLLECT INTO v_saltab; 
END update_all_emps; 
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Terminology 

Key terms used in this lesson included: 
• Bulk Binding 
• BULK COLLECT Clause 
• DETERMINISTIC Clause 
• FORALL 
• NOCOPY hint 
• RETURNING Clause 
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Summary 

In this lesson, you should have learned how to: 
• Identify the benefits of the NOCOPY hint and the 
DETERMINISTIC clause 

• Create subprograms which use the NOCOPY hint and the 
DETERMINISTIC clause 

• Use Bulk Binding FORALL in a DML statement 
• Use BULK COLLECT in a SELECT or FETCH statement 
• Use the Bulk Binding RETURNING clause 
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