
SE	3200:	Web	Application	Development	I
Assignment:	Resourceful
Requirements

Resource

Define	a	single	resource	that	your	web	application	will	manage.	Also	define	a	simple	data	model	for	your
resource	that	includes	at	least	five	attributes	(not	including	the	unique	identifer).

Server	API

Using	Python,	create	a	server	web	application	which	implements	an	API	that	supports	full	CRUD
operations	for	your	resource,	according	to	the	following	specifications:

Five	RESTful	routes,	each	implemented	using	the	appropriate	request	method	and	path,	response
headers,	and	response	status	codes	(including	any	error	conditions):

List:	returns	a	JSON	representation	of	the	collection’s	members.

Retrieve:	returns	a	JSON	representation	of	a	single	member	in	the	collection,	as	specified	by
the	unique	identifier	given	as	a	path	parameter.

Create:	creates	a	new	member	within	the	collection,	as	specificed	by	the	data	parameters
given	in	the	request	body.

Replace:	updates	an	existing	member	in	the	collection,	as	specified	by	the	unique	identifier
given	as	a	path	parameter,	and	by	the	data	parameters	given	in	the	request	body.

Delete:	removes	an	existing	member	from	the	collection,	as	specified	by	the	unique	identifier
given	as	a	path	parameter.

CORS	should	be	implemented	server-wide	in	order	to	support	Ajax	requests	from	client
applications.	This	should	include	support	for	both	simple	requests	and	preflighted	requests,	by
implementing	the	 OPTIONS 	method	appropriately.

If	a	request	is	received	that	does	not	conform	to	the	RESTful	routes	defined	above,	then	the	server
should	return	an	appropriate	error	response,	with	the	correct	status	code,	headers,	and	content
body	that	properly	explain	the	reason	for	the	response.	This	should	include	requests	for	an	invalid
route	(method/path	pair),	and	requests	that	specify	a	nonexistent	member	of	the	collection.

Database

Using	SQLite,	create	a	valid	database	schema	sufficient	to	store	data	records	according	to	the	data
model	that	you	defined	to	represent	your	resource.

Within	your	server	application,	create	a	Python	class	to	encapsulate	all	database	logic	for	your
application.	This	class	will	then	be	utilized	by	each	of	the	RESTful	actions	implemented	by	the	server
API	to	interface	with	the	database	for	all	CRUD	operations.

Client

Using	JavaScript,	create	a	client	web	application	that	communicates	with	your	server	application,	using
its	API,	on	behalf	of	the	user,	with	the	following:

A	list	showing	the	collection	of	members	for	your	resource,	with	at	least	two	of	the	attributes
displayed	for	each	member	in	the	list.	The	list	should	be	able	to	clearly	and	effectively	display	many
records.	The	data	for	the	list	should	be	requested	using	the	appropriate	API	endpoint.	The	list
should	remain	updated	with	any	changes	made	via	the	functionality	described	below,	using	API
requests	as	necessary	to	receive	updated	data.

A	form	used	to	create	a	new	member	in	the	collection,	as	well	as	to	update	an	existing	member.	The
form	should	include	a	field	for	each	attribute	belonging	to	your	resource.	When	updating,	the	form



fields	should	be	pre-filled	such	that	the	user	may	quickly	make	a	change	without	re-entering	the
values.	The	data	from	the	form	should	be	sent	using	the	appropriate	API	endpoints.

Buttons	and/or	links	which	accommodate	any	needed	UI	transitions,	such	as	to	display	an	empty
form	to	create	a	new	member,	or	to	display	a	pre-filled	form	to	update	an	existing	member.

A	delete	button	or	link	associated	to	each	record	that	allows	the	user	to	remove	a	member	from	the
collection,	after	confirming	the	action	with	the	user	(hint:	use	the	 confirm() 	method).

Optionally,	a	read-only	list	of	all	attributes	and	associated	values	for	a	single	member	in	the
collection,	using	data	requested	by	the	retrieve	API	endpoint.	Alternatively,	it	is	sufficient	for	the
user	to	view	the	attributes	of	each	member	via	the	pre-filled	form	described	above,	using	data
requested	by	the	list	API	endpoint.

All	data	sent	to	and	received	from	the	server	API	should	be	implemented	using	Ajax	requests.

You	may	take	liberties	to	modify	your	application’s	features	and	purpose	from	that	described	above,	but
the	overall	specifications	and	structure	listed	above	should	still	be	met.

Make	your	application	look	professional	and	presentable.	Use	valid	HTML	and	CSS	to	structure	and
style	your	application.

No	third-party	JavaScript	or	CSS	libraries	or	frameworks	may	be	used	without	prior	instructor
permission.

Documentation

The	following	items	should	be	clearly	detailed	and	documented	in	the	 README.md 	within	your	Git
repository:

The	name	of	your	resource,	and	the	name	of	each	of	its	attributes.

The	database	schema	which	represents	your	resource,	documented	as	a	valid	SQLite	 CREATE	TABLE
query.

All	REST	endpoints	implemented	by	your	API	server.	Include	the	name,	HTTP	method,	and	path	for
each.

Use	Markdown	to	structure	and	style	the	content	within	your	 README.md .	Go	here	to	see	an	example.

Submission
1.	 Submit	your	project	using	Git	and	GitHub.	Start	by	creating	a	repo	for	this	assignment	here.
2.	 Show	your	completed	assignment	to	the	instructor	during	class	or	office	hours	to	receive	credit.

https://guides.github.com/features/mastering-markdown/
https://github.com/dsu-cit-csweb3200/markdown-example
https://classroom.github.com/a/GaJZz6R3

