explore_data_prepared.py [download]
#!/usr/bin/env python3
import pandas as pd
import matplotlib.pyplot as plt
import math
feature_names = ["CP", "Weight", "Height"]
label_name = "Score"
column_count = len(feature_names) + 1
filename = "showcase-prepared.csv"
data = pd.read_csv(filename)
def pdf_figure(figure_number):
"""Configure figure for portrait orientation paper"""
# letter paper dimensions
width = 6.5
height = 9
fig = plt.figure(figure_number, figsize=(width, height))
return fig
def png_figure(figure_number):
"""Configure figure for landscape orientation screen"""
# 16:9 ratio, on paper dimensions
width = 9
height = 5
fig = plt.figure(figure_number, figsize=(width, height))
return fig
def histogram_column(fig, series, plot_count, plot_number):
"""
Add a axes as a subplot,
set to log scale on the y-axis,
histogram the values in the series, with 20 bins,
create 5 tick marks on the x-axis,
"""
ax = fig.add_subplot(plot_count, plot_count, plot_number)
ax.set_yscale("log")
n, bins, patches = ax.hist(series, bins=20)
ax.set_xlabel(series.name)
ax.locator_params(axis='x', tight=True, nbins=5)
return ax, n
def histogram_all(data, feature_names, label_name):
"""
For each feature and the label, add a histogram as a subplot.
Scale each y-axis to the same range for better comparison.
"""
figure_number = 1
fig = png_figure(figure_number)
fig.suptitle("Feature Histograms")
plot_count = int(math.ceil(math.sqrt(column_count)))
plot_number = 1
n_max = 1
all_ax = []
for column_name in feature_names + [label_name]:
ax, n = histogram_column(fig, data[column_name], plot_count, plot_number)
if max(n) > n_max:
n_max = max(n)
all_ax.append(ax)
plot_number += 1
for ax in all_ax:
ax.set_ylim(bottom=1.0, top=n_max)
fig.tight_layout()
figure_name = "showcase_prepared_histograms.png"
fig.savefig(figure_name)
plt.close(fig)
return
def scatter_column(fig, feature_series, label_series, plot_count, plot_number):
"""
Use the feature values as the x-axis, and the label as the y-axis.
Scatter plot the data in the new axes created here.
"""
ax = fig.add_subplot(plot_count, plot_count, plot_number)
ax.scatter(feature_series, label_series, s=1)
ax.set_xlabel(feature_series.name)
ax.set_ylabel(label_series.name)
ax.locator_params(axis='both', tight=True, nbins=5)
return ax
def scatter_all(data, feature_names, label_name):
"""
For each feature, scatter plot it vs the label.
"""
figure_number = 2
fig = png_figure(figure_number)
fig.suptitle("Features vs. Label")
plot_count = int(math.ceil(math.sqrt(column_count)))
plot_number = 1
all_ax = []
for column_name in feature_names + [label_name]:
ax = scatter_column(fig, data[column_name], data[label_name], plot_count, plot_number)
all_ax.append(ax)
plot_number += 1
fig.tight_layout()
figure_name = "showcase_prepared_scatters.png"
fig.savefig(figure_name)
plt.close(fig)
return
def main():
histogram_all(data, feature_names, label_name)
scatter_all(data, feature_names, label_name)
return
if __name__ == "__main__":
main()
Last Updated 01/23/2025