explore_data_fit_fine.py [download]
#!/usr/bin/env python3
import pandas as pd
import matplotlib.pyplot as plt
import math
import joblib
from showcase_common_fine import *
# load model
(regressor,scaler) = joblib.load(model_filename)
column_count = len(feature_names) + 1
def pdf_figure(figure_number):
"""Configure figure for portrait orientation paper"""
width = 6.5
height = 9
fig = plt.figure(figure_number, figsize=(width, height))
return fig
def png_figure(figure_number):
"""Configure figure for landscape orientation screen"""
# 16:9 ratio, on paper dimensions
width = 9
height = 5
fig = plt.figure(figure_number, figsize=(width, height))
return fig
def scatter_column(fig, feature_series, label_series, plot_count, plot_number):
"""
Use the feature values as the x-axis, and the label as the y-axis.
Scatter plot the data in the new axes created here.
"""
ax = fig.add_subplot(plot_count, plot_count, plot_number)
ax.scatter(feature_series, label_series, s=1, label="data")
ax.set_xlabel(feature_series.name)
ax.set_ylabel(label_series.name)
ax.locator_params(axis='both', tight=True, nbins=5)
return ax
def scatter_all(data, feature_names, label_name, y_predicted):
"""
For each feature, scatter plot it vs the label.
Also plot it vs the predicted label value
"""
figure_number = 2
fig = png_figure(figure_number)
fig.suptitle("Features vs. Label")
plot_count = int(math.ceil(math.sqrt(column_count)))
plot_number = 1
all_ax = []
for column_name in feature_names + [label_name]:
ax = scatter_column(fig, data[column_name], data[label_name], plot_count, plot_number)
ax.scatter(data[column_name], y_predicted, s=1, color="magenta", label="fit")
ax.legend()
all_ax.append(ax)
plot_number += 1
fig.tight_layout()
figure_name = "showcase_prepared_scatters_fit_fine.png"
fig.savefig(figure_name)
plt.close(fig)
return
def main():
"""Find model's prediction, and plot it"""
global X_train
X_train = scaler.transform(X_train)
y_predicted = regressor.predict(X_train)
scatter_all(data, feature_names, label_name, y_predicted)
return
if __name__ == "__main__":
main()
Last Updated 01/23/2025