fit_data_fine.py [download]
#!/usr/bin/env python3
import sklearn
import sklearn.preprocessing
import sklearn.linear_model
import joblib
# read data, define fields, etc.
from showcase_common_fine import *
# peek at data
print(data.head(5))
# scale data with x' = (x - u) / s
scaler = sklearn.preprocessing.StandardScaler()
# find u and s
scaler.fit(X_train)
# transform data
X_train = scaler.transform(X_train)
# peek at scaled data
print("Scaled Features")
print(feature_names)
print(X_train[:5,:])
# do the fit/training
regressor = sklearn.linear_model.SGDRegressor(max_iter=10000)
regressor.fit(X_train, y_train)
# save the trained model
joblib.dump((regressor,scaler), model_filename)
Last Updated 01/23/2025