model_evaluation.py [download]
#!/usr/bin/env python3
#
# Evaluation of model performance
#
import sklearn.metrics
import numpy as np
import os.path
import joblib
import open_data
def sklearn_metric(y, yhat):
"""
Try to pretty-print the confusion matrix as text.
If binary data, then compute precision, recall and F1.
If multi-class data, then compute classification report.
Expects y and yhat to be the class number. (*NOT one-hot-encoded*).
"""
cm = sklearn.metrics.confusion_matrix(y, yhat)
###
header = "+"
for col in range(cm.shape[1]):
header += "-----+"
rows = [header]
for row in range(cm.shape[0]):
row_str = "|"
for col in range(cm.shape[1]):
row_str += "{:4d} |".format(cm[row][col])
rows.append(row_str)
footer = header
rows.append(footer)
table = "\n".join(rows)
print(table)
print()
###
if cm.shape[0] == 2:
precision = sklearn.metrics.precision_score(y, yhat)
recall = sklearn.metrics.recall_score(y, yhat)
f1 = sklearn.metrics.f1_score(y, yhat)
print("precision: {}".format(precision))
print("recall: {}".format(recall))
print("f1: {}".format(f1))
else:
report = sklearn.metrics.classification_report(y, yhat)
print(report)
return
def show_score(my_args):
"""
Textual display of trained model's scores.
Expects y_train to be the class number.
Expects the model's output to be the proba (probability) for each class.
"""
model_file = my_args.model_file
if not os.path.exists(model_file):
raise Exception("Model file, '{}', does not exist.".format(model_file))
X_train, y_train = open_data.load_batch(my_args.batch_number)
model = joblib.load(model_file)
yhat_train_proba = model.predict(X_train)
yhat_train = np.argmax(yhat_train_proba, axis=1)
print()
print("{}: train: ".format(model_file))
print()
sklearn_metric(np.argmax(y_train, axis=1), yhat_train)
print()
return
Last Updated 03/17/2025